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Abstract

Background

Declines in biodiversity and ecosystem health due to climate change are raising urgent

concerns.  In  response,  large-scale  multispecies  monitoring  programmes  are  being

implemented that increasingly adopt sensor-based approaches such as acoustic recording.

These approaches rely heavily on ecological data science. However, developing reliable

algorithms for processing sensor-based data relies heavily on labelled datasets of sufficient

quality and quantity. We present a dataset of 1,575 dawn chorus soundscape recordings,

141 being fully annotated (n = 32,994 annotations) with avian, mammalian and amphibian

vocalisations.  The  remaining  recordings  were  included  to  facilitate  novel  research

applications. These recordings are paired with 48 site-level climatic, forest structure and

topographic  covariates.  This  dataset  provides  a  valuable  resource  to  researchers

developing acoustic classification algorithms or studying biodiversity and wildlife behaviour

and its relationship to environmental gradients. The dawn chorus recordings were collected
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as part of a long-term Northern Spotted Owl monitoring program; this demonstrates the

complementary value of harnessing existing monitoring efforts to strengthen biodiversity

sampling.

New information

This  dataset  of  dawn  chorus  soundscape  recordings  is  one  of  the  few  open-access

acoustic datasets annotated with non-biotic and both interspecific (across species) and

intraspecific (within species) bird, mammal and amphibian sonotypes and the first that is

paired with climatic,  forest  structure and topographical  covariates extracted at  recorder

locations. This makes it a valuable resource for researchers studying the dawn chorus and

its relationship to the environment.
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Introduction

Scientists worldwide are documenting unprecedented and potentially accelerating declines

in ecosystem health and biodiversity (Butchart et al. 2010, Ceballos et al. 2020, Cowie et

al. 2022), aggravated by climate change and other anthropogenic stressors (e.g. habitat

loss and fragmentation). These declines have raised concerns about the loss of ecosystem

integrity and the erosion of ecosystem services (Cardinale et al. 2012, Díaz et al. 2019),

which has prompted increased demands for large-scale multispecies monitoring (Oliver et

al. 2021). However, conventional monitoring methods are time-consuming, expensive and

difficult  to  scale,  which  limits  their  spatial  coverage,  temporal  resolution  and  species

diversity.

To overcome these limitations, monitoring and research programmes increasingly adopt

innovative protocols that leverage high-throughput sensor technologies like autonomous

recording units and motion-activated cameras (Sugai et al. 2019, Tosa et al. 2021, Tuia et

al.  2022).  These  sensor-based  monitoring  approaches  offer  several  advantages  over

conventional methods (Shonfield and Bayne 2017, Gibb et al. 2018). These include lower

per-unit  sampling  costs,  archivable  raw  data,  reduced  invasiveness,  the  potential  for

expanded species coverage when paired with machine-learning classification algorithms

and  increased  spatiotemporal  sampling  scales  (provided  that  programmes  choose  to

leverage the reduced per-unit cost to expand sampling scales). However, sensor-based

data  types  are  often  unfamiliar  to  ecologists  and  may  present  new  analytical  and

computational challenges that require interdisciplinary collaboration to develop and apply

computational  perception models  (i.e.  computer  vision and computer  hearing;  Thessen

2016, Priyadarshani et al. 2018, Carey et al. 2019) and address changes in dataset size

(Farley et al. 2018, Wall et al. 2021).
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The quality  of  labelled datasets  is  essential  for  the successful  training,  evaluation and

generalisation of perception models (Song et al. 2022, Mots'oehli and Baek 2023). The

performance of a model improves with higher-quality data labels, regardless of the model

architecture  (Li  et  al.  2022).  However,  data  preparation can be difficult  and expensive

(Stonebraker and Rezig 2019, Whang and Lee 2020),  especially  for  ecological  datasets

that require specialised skills to identify specific sounds or image features (Thessen 2016).

Labelled  ecological  datasets  are  increasingly  being  made  available  (Mumm  and

Knörnschild 2014, Fukushima et al. 2015, Goëau et al. 2016, Prat et al. 2017, Stowell et al.

2018, LeBien et al. 2020); however, only a few acoustic datasets focus on within-species

sonotypes (Vidaña-Vila et al. 2017, Morfi et al. 2019) or specifically target the avian dawn

chorus (Hopping et al. 2022). The avian dawn chorus remains challenging for computer

hearing due to its complexity of calls, polyphonic character and potential for geographic

variation (Duan et al. 2013, Stowell 2022). More dawn chorus-focused and vocalisation-

specific  acoustic  datasets  could  help  advance  our  understanding  of  an  ecologically

important  period  for  the  study  of  avian  biodiversity  (Bibby  et  al.  2000)  and  behaviour

(McNamara et al. 1987, Staicer et al. 1996, Zhang et al. 2015, Teixeira et al. 2019).

The  Northwest  Forest  Plan  (hereafter  NWFP;  U.S.  Department  of  Agriculture  Forest

Service and U.S. Department of the Interior Bureau of Land Management 1994), adopted

in 1994, marked a refocus of federal land management policies towards a more balanced

approach, prioritising the protection and recovery of habitat for imperilled old-forest species

and  overall  biodiversity  (U.S.  Department  of  Agriculture  Forest  Service  and  U.S.

Department  of  the  Interior  Bureau  Land  Management  1994).  Under  the

NWFP Effectiveness Monitoring Program, long-term  monitoring  of  federally  threatened

Northern Spotted Owl Strix occidentalis caurina (Merriam, 1898); hereafter spotted owl;

(U.S. Fish and Wildlife Service 2020) populations is required. The monitoring programme

consisted of two phases (Lint et al. 1999). The first phase focused on estimating vital rates

and  demographic  performance  using  mark-resight  data  of  spotted  owls  from historical

territories in  eight  study areas (Franklin  et  al.  2021).  The second phase used passive

acoustic  monitoring  to  collect  data  to  estimate  spotted  owl  occupancy  and  habitat

associations across its range (Lesmeister et al. 2021, Lesmeister and Jenkins 2022). The

transition  to  the  second  monitoring  phase  marks  a  potential  watershed  moment  for

conserving  and  managing  forested  lands  in  the  Pacific  Northwest.  Spotted  owl

conservation and management objectives continue to be met (Duchac et al. 2020, Appel et

al. 2023, Weldy et al. 2023), while simultaneously providing valuable multispecies acoustic

monitoring  data  for  other  objectives,  such  as  monitoring  other  old-forest-associated

species identified in the NWFP, supporting other state and national conservation directives

(such  as  the  National  Forest  Management  Act;  94th  Congress  2nd  Session  (1976)),

complementing strategic conservation planning efforts (Law et al. 2021) and contributing to

global biodiversity conservation and monitoring efforts (IPBES 2018, Conference of the

Parties to the Convention on Biological Diversity 2022).

In this context, we present annotated passive acoustic monitoring data collected during

2022 to support long-term monitoring of federally threatened spotted owl populations under

the NWFP Effective Monitoring Program. The data were collected with Wildlife Acoustics
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Song Meter SM4 autonomous recording units during the hour following sunrise at 525 sites

in California, Oregon and Washington, USA (Wildlife Acoustics, Maynard, MA). Additionally,

we obscured exact sampling locations to protect sensitive species, but we provided 48

forest-structure-related environmental covariates extracted at each recorder location. This

dataset  provides  value  for  researchers  involved  in  developing  or  evaluating  acoustic

classification  algorithms  and  for  those  interested  in  exploring  the  spatial  variation  in

species-specific  vocalisation  phonology  or  the  relationships  amongst  occurrence,

vocalization  behaviour  and  environmental  characteristics,  and  contributes  to  making

ecological research more transparent and reproducible (Poisot et al. 2013, Kenall et al.

2014, Baker and Vincent 2019).

Project description

Design description: We focused on the avian dawn chorus, including both migratory and

resident species. The dawn chorus, characterized by the singing of numerous birds during

the early morning hours, is an ecologically important period for studying avian behaviour

(McNamara et al. 1987, Staicer  et  al.  1996,  Zhang  et  al.  2015)  and  monitoring  avian

biodiversity (Bibby et al.  2000). By incorporating the study of the dawn chorus into the

existing monitoring efforts, we aim to enrich our understanding of avian populations and

their interactions within the Pacific-Northwest, which, in turn, can increase understanding of

how  individual  species  and  biodiversity  are  influenced  by  anthropogenic  and  climatic

change.

Sampling methods

Description: In  2022,  following  the  protocol  outlined  in  Lesmeister  et  al.  (2021),  we

collected  acoustic  recordings  of  643  hexagons,  each  of  which  was  5  km ,  that  were

randomly selected from a larger tessellation of hexagons covering the entire spotted owl

range (northern California, Oregon and Washington; Fig. 1). We limited the set of available

hexagons to those encompassing ≥ 50% forest-capable lands (defined as forested lands or

lands capable of developing closed-canopy forests) and be under ≥ 25% federal ownership

(Davis et al. 2011).

Sampling  description: Four  Song  Meter  4  (SM4)  autonomous  recording  units  were

deployed in a standardised arrangement in each hexagon. The recorders were positioned

at least 500 m apart at a minimum distance of 200 m from the hexagon boundary. The

SM4 devices were mounted on to small  trees (15–20 cm in diameter at breast height)

approximately 1.5 m above the ground on mid-to-upper slopes and ≥ 50 m from roads,

trails and streams. The SM4 devices have two built-in omnidirectional microphones with a

signal-to-noise ratio of 80 dB, typical at 1 kHz and a recording bandwidth of 0.02–48 kHz.

The recording rate was set to 32 kHz at  16-bit  resolution and the data were saved in

uncompressed WAV format.
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Recordings were collected for six weeks, from March to August.  Each device recorded

approximately 11 hours of audio daily. The daily recording schedule comprised a 4-hour

window starting two hours before sunrise and ending two hours after sunrise, another 4-

hour window starting one hour before sunset and ending three hours after sunset and 10-

minute recordings at the start of every hour outside the two longer recording blocks.

Step description:  Dawn chorus dataset preparation 

We limited the available set of  recordings to only those occurring from May–August to

ensure  we  included  migratory  species  (Robinson  et  al.  2019).  This  selection  criteria

resulted in a reduced pool of 525 hexagons. Three audio recordings from the first hour

after  sunrise  were  randomly  selected  from  this  subset  and  a  5-minute  window  was

extracted from each recording using a randomised start time. The three recordings from

each site are referred to as replicates. The resulting dataset comprised 1,575 x 5-minute

recordings.  We randomly  selected  141  recordings  from the  dataset  for  full  annotation

(hereafter  dawn  chorus  dataset;  see  dataset  annotated_recordings.zip).  Additional

recordings  (see  dataset:  additional_recordings_part_{1-11}.zip)  were  provided,  either

unlabelled or partially labelled, to facilitate novel research applications and methodological

evaluations.

Figure 1.  

Map  of  acoustic  recording  locations  (grey  squares)  in  northern  California,  Oregon  and

Washington, USA. To protect sensitive species that might occur at our sampling locations, we

obscured  specific  recording  locations  to  the  resolution  of  the  overlapping  Townships  and

Ranges.
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Annotation methods 

Prior to labelling, we developed a sonotype library, which describes the acoustic properties

of  260  sound  types  and  describes  a  standardised  label  structure  (see  dataset:

metadata.tsv).  Sonotype  descriptions  and  categories  were  developed  by  acoustic  and

visual  inspection  of  examples  and  supplemented  by  descriptions  provided  by  Pieplow

(2019). We provide two label sets: the first provides species-level identifications, based on

the  2021  eBird  codes  according  to  Clement’s  taxonomy  (Clements  et  al.  2022).  The

second describes different vocalisations within species by concatenating the 2021 eBird

code for the species with codes that incremented depending on the species repertoire (i.e.

‘call_1,’ ‘song_1,’ ‘drum_1’). For example, ‘herthr_song_1’ is the label for Hermit Thrush

Catharus guttatus (Pallus,  1811)  song_1.  Amphibian and mammalian common species

names were adapted following the structure of the 2021 eBird codes.

Two trained annotators labelled each 2-second window with labels from the set of potential

sound types. Unknown signals were labelled ‘unknown,’ and clips with no biotic signals (or

noise  classes of  interest  documented in  metadata.tsv)  were  labelled  ‘empty.’  Windows

were labelled ‘complete’ and considered fully annotated when every signal was assigned

an annotation. Files were deemed fully annotated when every 2-second window of the 5-

minute recording was assigned the ‘complete’ label. The label 'impossible' was utilised for

instances where a biological sound was present in the window, but could not be confidently

identified, often due to faintness or being obscured by rain. Additionally, eight aggregated

biotic sounds were not separated due to uncertainty in assigning a label confidently.

We used two annotation methods: linear annotation and model-assisted annotation. The

linear  annotation  method  consisted  of  fully  annotating  dawn  chorus  recordings  in

sequence. The model-assisted method used BirdNET version 2.2 (Kahl et al. 2021) using

default  settings  with  longitude  and  latitude  set  to  -1  and  a  proprietary  multi-label

convolutional neural network classification model developed by Conservation Metrics, Inc.,

pre-trained  avian  classification  models,  to  group  audio  windows  with  high-confidence

predictions for common species. The grouped audio windows were manually reviewed so

clips with common sound types could be reviewed concurrently. We did not record which

model was used to search specific signals, but grouped by several expected species from

each model and the "empty" category in the proprietary model. The model-assisted clips

were then fully reviewed and labelled using the linear method and vocalisations for other

species were added to the clip annotations.

Environmental characteristics 

We included 48 variables, including three climatic variables, 38 forest structure variables,

five topographic variables and two masked spatial variables. We downloaded estimates of

annual  precipitation  (mm),  minimum temperature  (°C)  and  maximum temperature  (°C)

averaged from 1970–2000 at a 1 km  resolution from WorldClim version 2.1 (Fick and

Hijmans 2017). We downloaded estimates of forest structure characteristics from LEMMA

(Landscape Ecology Modelling Mapping and Analysis Team (LEMMA) 2020). LEMMA

forest  structure  estimates  are  derived  using  gradient  nearest-neighbour  imputation
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methods, based on regional inventory plots (Ohmann and Gregory 2002). For topographic

variables, we downloaded digital elevation models (DEM) at 10 m  resolution from Earth

Explorer. Using a mosaicked DEM, we estimated slope, topographic position index (TPI),

vector ruggedness measure (VRM) and northness at 10 m  resolution. We calculated TPI,

scaled from −39.1 to 43.8, as the mean difference of the central points to the focal squares

of the surrounding 5 × 5 grid cells. Thus, low and high values represent lower and higher

slopes, respectively (Wiess 1999). We then estimated VRM, which integrates the variation

in  slope  and  aspect,  using  the  methods  described  in  Sappington  et  al.  (2010).  VRM

provides a better measure of terrain variability than slope and elevation (Sappington et al.

2010).  As  aspect  is  a  circular  variable,  we  transformed  it  into  "northness"  such  that

northness = cosine(aspect), which is scaled so that southern exposed lands have values

close  to  −1 and northern  exposed lands  have values  close  to  1  (Guisan et  al.  1999, 

Lassueur et  al.  2006).  All  spatial  data transformations and extractions were completed

using the terra (1.7–39) and sf (1.0–14) packages for R version 4.1.2 (Pebesma 2018, R

Core Team 2021, Hijmans 2023, Pebesma and Bivand 2023).

Analytical Methods 

We performed two sets of analyses. The first set of analyses used t-distributed stochastic

neighbour  (van  der  Maaten  and  Hinton  2008,  Hinton  and  Roweis  2022)  to  visualise

BirdNET version 2.2 embeddings (Kahl et al. 2021) for three aggregated biophonic sound

groups. The first visualisation characterised the Parulidae complex (ebird code: paruli) and

the Setophaga complex (ebird code: setoph). The Parulidae complex label was assigned to

acoustic clips to which we could not confidently assign labels, but included sounds from

macwar,  naswar,  wlswar  and  yerwar.  Similarly,  the  Setophaga label  was  assigned  to

acoustic clips to which we could not confidently assign labels, but included sounds from

btywar,  herwar and towwar.  The second visualisation characterised the unknown avian

chip call class, including examples of avian chip calls to which we could not confidently

assign labels. We extracted feature embeddings for each clip in both visualisations using

BirdNET version 2.2. The 320-dimensional feature embeddings were then mapped to two

dimensions  using  t-distributed  stochastic  neighbour  embedding  using  a  principal

components initialisation and fit  with 5,000 iterations and a perplexity value of 20. The

second analysis estimated the difference in the Gaussian kernel density of species-specific

occurrence across three gradients of environmental characteristics. The base rate kernel

density for the sampling occurrence was subtracted from the species-specific occurrence

kernel  density  to  evaluate  if  species  occurred  more  frequently  at  specific  values  of

environmental  characteristics  relative  to  the  representation  of  the  environmental

characteristic  across  the  sample  locations.  Values  greater  than  one  indicate  a  higher

occurrence relative to the base rate and values less than one indicate a lower occurrence

relative to the base rate.

Geographic coverage

Description: We  used  acoustic  recordings  collected  from  federally  managed  lands  in

California,  Oregon  and  Washington,  focusing  on  forest-capable  areas  (Fig.  1).  The

2
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recording  locations  were  randomly  selected  within  a  defined  bounding  box,  spanning

latitudes from 37°43'48''N to 49°01'48''N and longitudes from 125°00'00''W to 120°30'00''W.

Elevations at the recording locations ranged 52 to 2,252 m.

We took measures to protect sensitive species that might occur at our sampling locations.

As a result, we obscured specific recording locations to the resolution of the overlapping

Townships and Ranges, which are approximately 1 mi  (2.58 km ) grid cells used by the

U.S. Public Land Survey System. We also provide detailed environmental characteristics

extracted from the actual recorder locations. This approach ensures data privacy, while

allowing us to furnish essential information for our study.

Coordinates: 37°43'48''N and  49°01'48''N Latitude;  125°00'00''W and  120°30'  00''W

Longitude.

Taxonomic coverage

Description: We identified  116  sound  types  during  the  annotation  of  these  recordings

(Table  1).  The  annotations  include  sonotypes  from 58  avian  species,  two  mammalian

species,  one  amphibian  species,  eight  aggregated  biophonic  sounds,  one  geophonic

sound  type  and  six  anthrophonic  sound  types  (Table  2).  The  eight  aggregated  biotic

sounds included the labels “chipmu”, “drum”, “fly”, “paruli”, “setoph”, “tree” and “unk”. The

"paruli"  and  "setoph"  labels  consisted  of  ambiguous  sounds  similar  to  those  of  other

unambiguous labels. The other aggregated biotic labels include sounds made by multiple

species; however, because the sounds described by each label type were similar, we could

not assign labels at a finer taxonomic resolution.

Type Common name Scientific name eBird code

Aggregated Biophonic Chipmunk Neotamias spp. chipmu*

Drum Picidae drum*

Fly Insecta fly*

Parulidae complex Parulidae paruli*

Setophaga complex Setophaga spp. setoph*

Tree creak tree*

Unknown chip Aves unk*

2 2

Table 1. 

This  dataset  includes  annotations  for  116  sound  categories,  including  58  avian  species,  two

mammalian species, one amphibian species, eight aggregated biophonic sounds, one geophonic

sound  type  and  six  anthrophonic  sound  types.  Each  annotation  is  accompanied  by  its

corresponding sound type, common name, scientific name and species code, following the 2021

eBird  conventions  for  Clement's  taxonomy.  Astericks  (*)  indicate  novel  class  labels  following

Clement’s naming conventions.
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Type Common name Scientific name eBird code

Wingbeat Aves wingbeat*

Amphibian American Bullfrog Rana catesbeiana (Shaw, 1802) amebul*

Anthrophony Airplane airplane*

Chainsaw chainsaw*

Gunshot gunshot*

Sensor noise sensor*

Truck beep truck*

Vehicle vehicle*

Bird American Goldfinch Spinus tristis (Linnaeus, 1758) amegfi

American Robin Turdus migratorius (Linnaeus, 1766) amerob

Band-tailed Pigeon Patagioenas fasciata (Say, 1822) batpig1

Bewick's Wren Thryomanes bewickii (Audubon, 1827) bewwre

Black-capped Chickadee Poecile atricapillus (Linnaeus, 1766) bkcchi

Black-headed Grosbeak Pheucticus melanocephalus (Swainson, 1827) bkhgro

Black-throated Gray Warbler Setophaga nigrescens (Townsend, 1837) btywar

Brown Creeper Certhia americana (Bonaparte, 1838) brncre

Bushtit Psaltriparus minimus (Townsend, 1837) bushti

Canada Jay Perisoreus canadensis (Linnaeus, 1766) gryjay

Cassin's Vireo Vireo cassinii (Xantus de Vesey, 1858) casvir

Cedar Waxwing Bombycilla cedrorum (Vieillot, 1808) cedwax

Chestnut-backed Chickadee Poecile rufescens (Townsend, 1837) chbchi

Chipping Sparrow Spizella passerina (Bechstein, 1798) chispa

Common Raven Corvus corax (Linnaeus, 1758) comrav

Cooper's Hawk Accipiter cooperii (Bonaparte, 1828) coohaw

Dark-eyed Junco Junco hyemalis (Linnaeus, 1758) daejun

Downy Woodpecker Dryobates pubescens (Linnaeus, 1766) dowwoo

Dusky Flycatcher Empidonax oberholseri (Phillips, 1939) dusfly

Evening Grosbeak Hesperiphona vespertina (Cooper, 1825) evegro

Golden-crowned Kinglet Regulus satrapa (Lichtenstein, 1823) gockin

Hairy Woodpecker Leuconotopicus villosus (Linnaeus, 1766) haiwoo

Hammond's Flycatcher Empidonax hammondii (Xantus de Vesey, 1858) hamfly

Hermit Thrush Catharus guttatus (Pallus, 1811) herthr

Hermit Warbler Setophaga occidentalis (Townsend, 1837) herwar
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Type Common name Scientific name eBird code

Hutton's Vireo Vireo huttoni (Cassin, 1851) hutvir

Lazuli Bunting Passerina amoena (Say, 1822) lazbun

MacGillivray's Warbler Geothlypis tolmiei (Townsend, 1839) macwar

Mountain Chickadee Poecile gambeli (Ridgway, 1886) mouchi

Mountain Quail Oreortyx pictus (Douglas, 1829) mouqua

Nashville Warbler Leiothlypis ruficapilla (Wilson, 1811) naswar

Northern Flicker Colaptes auratus (Linnaeus, 1758) norfli

Northern Pygmy-Owl Glaucidium gnoma (Wagler, 1832) nopowl

Olive-sided Flycatcher Contopus cooperi (Nuttall, 1831) olsfly

Orange-crowned Warbler Leiothlypis celata (Say, 1822) orcwar

Pacific Wren Troglodytes pacificus (Baird, 1864) pacwre1

Pacific-slope Flycatcher Empidonax difficilis (Baird, 1858) pasfly

Pileated Woodpecker Dryocopus pileatus (Linnaeus, 1758) pilwoo

Pine Siskin Spinus pinus (Wilson, 1810) pinsis

Purple Finch Haemorhous purpureus (Gmelin, 1789) purfin

Red-breasted Nuthatch Sitta canadensis (Linnaeus, 1766) rebnut

Rooster (Red Junglefowl) Gallus gallus (Linnaeus, 1758) redjun1

Rufous Hummingbird Selasphorus rufus (Gmelin, 1788) rufhum

Say's Phoebe Sayornis saya (Bonaparte, 1825) saypho

Sooty Grouse Dendragapus fuliginosus (Ridgway, 1873) soogro1

Spotted Towhee Pipilo maculatus (Swainson, 1827) spotow

Steller's Jay Cyanocitta stelleri (Gmelin, 1788) stejay

Swainson's Thrush Catharus ustulatus (Nuttall, 1840) swathr

Townsend's Solitaire Myadestes townsendi (Audubon, 1838) towsol

Townsend's Warbler Setophaga townsendi (Townsend, 1837) towwar

Varied Thrush Ixoreus naevius (Gmelin, 1789) varthr

Warbling Vireo Vireo gilvus (Vieillot, 1808) warvir

Western Tanager Piranga ludoviciana (Wilson, 1811) westan

Western Wood-Pewee Contopus sordidulus (Sclater, 1859) wewpew

Wild Turkey Meleagris gallopavo (Linnaeus, 1758) wiltur

Wilson's Warbler Cardellina pusilla (Wilson, 1811) wlswar

Wrentit Chamaea fasciata (Gambel, 1845) wrenti

Yellow-rumped Warbler Setophaga coronata (Linnaeus, 1766) yerwar
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Type Common name Scientific name eBird code

Geophony Rain rain*

Mammal Dog Canis lupus familiaris (Linnaeus, 1758) dog*

Douglas squirrel Tamiasciurus douglasii (Bachman, 1839) dousqu*

State May June July August

California 19 8 0 0

Oregon 487 222 278 0

Washington 187 122 191 61

Temporal coverage

Data range: 2022-5-01 - 2022-9-25. 

Notes: The  audio  clips  comprising  this  dataset  were  recorded  during  the  initial  hour

following sunrise, spanning the time frame from 01-05-2022 to 25-09-2022. However, due

to variations in the spatial distribution of our recording units and the effects of our filtering

criteria, recordings from May are relatively over-represented and recordings from California

only occurred during May and June (Table 1).

Usage licence

Usage licence: Other

IP rights notes: Creative Commons Attribution (CC-BY) 4.0 License

Data resources

Data package title: Audio tagging of avian dawn chorus recordings in California, Oregon

and Washington

Resource link: DOI: https://zenodo.org/doi/10.5281/zenodo.8047849

Number of data sets: 7

Data set name: Acoustic files

Download URL:  https://zenodo.org/records/10895837/files/acoustic_files.tsv?

download=1 

Table 2. 

Number of acoustic recordings collected from May to August 2022.
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Data format: tsv

Description:  This dataset describes the acoustic recordings included in this dataset.

The acoustic recordings described in the dataset are available through an online data

repository DOI: https://zenodo.org/doi/10.5281/zenodo.8047849.

Column label Column description

site Site name.

replicate An ordinal label indicating the random draw label: ‘A’, ‘B’, or ‘C’.

recording_date Recording date and time formatted as “Year-Month-Day Hour:Minute:Second”.

annotated Categorical assignment describing whether a recording was completely annotated: ‘complete,’

‘partial,’ or ‘not annotated’.

file Wav file name.

zip_file The zip file location of the file.

Data set name: Acoustic annotations

Download URL:  https://zenodo.org/records/10895837/files/acoustic_annotations.tsv?

download=1 

Data format: tsv

Description:  This dataset lists all annotations from the fully annotated recordings.

Column label Column description

file Wav file name.

start Start time of the 2-second clip in seconds.

end End time of the 2-second clip in seconds.

eBird_2021 2021 species identification eBird code.

label Sonotype label concatenates the 2021 eBird taxonomy code and the sound type label.

Data set name: Partial annotations

Download URL:  https://zenodo.org/records/10895837/files/partial_annotations.tsv?

download=1 

Data format: tsv

Description:  This dataset lists all annotations from the partially annotated recordings.
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Column

label

Column description

file Wav file name.

start Start time of the 2-second clip in seconds.

end End time of the 2-second clip in seconds.

clip_complete Binary indicator for whether the clip was completely labelled.

eBird_2021 2021 species identification eBird code.

label Sonotype label comprising a concatenation of the 2021 eBird taxonomy code and the sound type

label.

Data set name: Annotation metadata

Download URL:  https://zenodo.org/records/10895837/files/annotation_metadata.tsv?

download=1 

Data format: tsv

Description:   This  dataset  describes  the  focal  acoustic  sounds  included  in  the

recording annotations.

Column label Column description

label Sonotype label comprising a concatenation of the 2021 eBird taxonomy code and the sound

type label.

eBird_2021 2021 eBird taxonomy species_code.

sound Sound type label.

common_name The common name of the sound source. For avian species, the scientific name follows

Clement’s taxonomy outlined in the 2021 eBird taxonomy.

scientific_name The scientific name of the biotic sound source. For avian species, the scientific name follows

Clement’s taxonomy outlined in the 2021 eBird taxonomy.

taxonomic_authority Primary taxonomic authority.

description Biological and phonetic description of the target sound.

n_files Total number of audio files containing at least one of the target labels.

n_annotations Total number of label-specific annotations in the fully annotated data.

Data set name: Environmental characteristics

Download URL:  https://zenodo.org/records/10895837/files/environmental_character

istics.tsv?download=1 
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Data format: tsv

Description:   This  dataset  lists  the environmental  characteristics  at  each recording

station. Units of measurements for appropriate covariates are in parentheses.

Column label Column description

site Site name.

replicate An ordinal label indicating whether the row describes a random sample ‘A’, ‘B’ or ‘C’.

state State location of survey site.

township_range Township and range identifier of the survey site. The township was data obtained from

three sources: CA, OR, WA.

age_dom_2017 Basal area weighted stand age, based on dominant and codominant trees (years).

ba_ge_3_2017 Basal area of live trees >= 2.5 cm dbh (m /ha).

bac_ge_3_2017 Basal area of live conifers >= 2.5 cm dbh (m /ha).

bah_ge_3_2017 Basal area of live hardwoods >= 2.5cm dbh (m /ha).

bph_ge_3_crm_2017 Component Ratio Method biomass of all live trees >= 2.5 cm (kg/ha).

bphc_ge_3_crm_2017 Component Ratio Method biomass of all live conifers >= 2.5 cm (kg/ha).

bphh_ge_3_crm_2017 Component Ratio Method biomass of all live hardwoods >= 2.5 cm (kg/ha).

cancov_2017 Canopy cover of all live trees (percent).

cancov_con_2017 Canopy cover of all conifers (percent).

cancov_hdw_2017 Canopy cover of all hardwoods (percent).

cancov_layers_2017 Number of tree canopy layers present (number of layers).

conplba_2017 Conifer tree species with the plurality of basal area (raster to alphanumeric look-up table

available at source).

covcl_2017 Cover class based on cancov (raster to alphanumeric look-up table available at source).

ddi_2017 Diameter diversity index

fortypba_2017 Forest type, which describes the dominant tree species of current vegetation (raster to

alphanumeric look-up table available at source).

hdwplba_2017 Hardwood tree species with the plurality of basal area (raster to alphanumeric look-up table

available at source).

mndbhba_2017 Basal-area weighted mean diameter of all live trees (cm).

mndbhba_con_2017 Basal-area weighted mean diameter of all live conifers (cm).

mndbhba_hdw_2017 Basal-area weighted mean diameter of all live hardwoods (cm).

qmd_dom_2017 The quadratic mean diameter of all dominant and codominant trees (cm).

2

2

2

14 Weldy M et al

https://gis.data.ca.gov/datasets/cadoc::public-land-survey-system-plss-township-and-range/about
https://spatialdata.oregonexplorer.info/geoportal/details;id=71c4c51d5cb74ddf84d93a65d4187d21
https://geo.wa.gov/datasets/fde7d46b0adf46b68f177d850ce85042/explore?location=47.804173%2C-122.122059%2C9.96


qmd_ht25_2017 The quadratic mean diameter in inches of trees whose heights are in the top 25% of all

tree heights (cm).

qmdc_dom_2017 The quadratic mean diameter of all dominant and codominant conifers (cm).

qmdh_dom_2017 The quadratic mean diameter of all dominant and codominant hardwoods (cm).

sbph_ge_25_2017 Biomass of snags >= 25 cm dbh and >= 2m tall (lb).

sdi_reineke_2017 Reineke's stand density index.

sizecl_2017 Size class, based on qmd_dom and cancov (raster to alphanumeric look-up table available

at source).

stndhgt_2017 Stand height, computed as the average height of all dominant and codominant trees (m).

stph_ge_25_2017 Density of snags >= 25 cm dbh and >= 2 m tall (trees/ha).

struccond_2017 Structural condition (raster to alphanumeric look-up table available at source).

svph_ge_25_2017 Volume of snags >= 25 cm dbh and >= 2 m tall (m /ha).

tph_ge_3_2017 The density of live trees >= 2.5 cm dbh (trees/ha).

tphc_ge_3_2017 The density of live conifers >= 2.5 cm dbh (trees/ha).

tphh_ge_3_2017 The density of live hardwoods >= 2.5 cm dbh (trees/ha).

treeplba_2017 Tree species with the plurality of basal area (raster to alphanumeric look-up table available

at source).

vegclass_2017 Vegetation class based on cancov, bah_prop, qmd_dom (raster to alphanumeric look-up

table available at source).

vph_ge_3_2017 The volume of live trees >= 2.5 cm dbh (m /ha).

vphc_ge_3_2017 The volume of live conifers >= 2.5 cm dbh (m /ha).

vphh_ge_3_2017 The volume of live hardwoods >= 2.5 cm dbh (m /ha).

dem_30m Digital elevation model at 30 m² resolution (m).

northness_30m A cosine transformation of aspect to demonstrate the orientation of a land relative to a

north-facing land derived from dem_30m.

slope_30m Estimate of land slope at 30 m² resolution derived from dem_30m.

tpi5x5_30m Mean difference of the central point to a focal square of the surrounding 5 × 5 grid cells

derived from dem_30m.

vrm_30m Variation in slope and aspect derived from dem_30m.

an_precip_1km Average precipitation at a 1 km  resolution averaged from 1970-2000 (mm).

minT_1km Average minimum temperature at a 1 km  resolution averaged from 1970-2000 (degrees

Celcius).

maxT_1km Average maximum temperature at a 1 km  resolution averaged from 1970-2000 (degrees

Celcius).

3

3

3

3

2

2

2

Audio tagging of avian dawn chorus recordings in California, Oregon and ... 15



Data set name: Environmental characteristics metadata

Download URL:  https://zenodo.org/records/10895837/files/environmental_character

istics_metadata.tsv?download=1 

Data format: tsv

Description:   This  dataset  describes  the  environmental  characteristics  included  in

environmental_characteristics.

Column

label

Column description

covariate Covariate name.

type Value type of variable.

range The range of values extracted across our survey sites. The values in this cell represent the value

minimum to the value maximum.

unit A description of the variable units of measurement.

description A description of the variable, including a brief discussion of the methods used to create the variable.

source Variable source.

Data set name: Annotator identification and annotation method

Download URL:  https://zenodo.org/records/10895837/files/annotator_method.tsv?

download=1 

Data format: tsv

Description:   This  dataset  describes  the  annotator  identification  and  annotation

method for each 2-second window.

Column

label

Column description

file Wav file name.

start Start time of the 2-second clip in seconds.

end End time of the 2-second clip in seconds.

method The annotation method used to label the 2-second clip. This label is only available for a subset of

clips used to estimate annotation speed.

annotator The annotator identifier for the 2-second clip.
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Additional information

Acoustic recordings

The  fully  annotated  acoustic  recordings  are  available  for  download  in a  zip  file  of

uncompressed wav format files.

• annotated_recordings.zip (141 WAV files, 1.8 GB)

The partial and unannotated recordings are available in 11 zip files of uncompressed wav

format files.

• additional_recordings_part_1.zip (132 WAV files, 1.6 GB)

• additional_recordings_part_2.zip (139 WAV files, 1.7 GB)

• additional_recordings_part_3.zip (137 WAV files, 1.7 GB)

• additional_recordings_part_4.zip (139 WAV files, 1.8 GB)

• additional_recordings_part_5.zip (139 WAV files, 1.8 GB)

• additional_recordings_part_6.zip (140 WAV files, 1.9 GB)

• additional_recordings_part_7.zip (139 WAV files, 1.8 GB)

• additional_recordings_part_8.zip (131 WAV files, 1.7 GB)

• additional_recordings_part_9.zip (135 WAV files, 1.8 GB)

• additional_recordings_part_10.zip (133 WAV files, 1.7 GB)

• additional_recordings_part_11.zip (70 WAV files, 900.4 MB)

Data dictionaries

Descriptive data dictionaries are available for download as a pdf file.

• data_dictionaries.pdf (63 kB)

Results and Discussion

We fully annotated 11.75 hours of audio with 32,994 labels for 115 sonotypes. An additional

216 files were partially  annotated with 5,278 labels for  53 sonotypes. We also provide

20,737  auditing  labels  indicating  clip-level  completion  status.  The  most  frequently

annotated species were Red-breasted Nuthatch Sitta canadensis (Linnaeus, 1766; eBird

code:  rebnut;  n  annotations = 2,496),  Pacific  Wren Troglodytes pacificus (Baird,  1864;

eBird  code:  pacwre1;  n  annotations  =  2,259),  Hermit  Thrush  (eBird  code:  herthr;  n

annotations = 1,750), Swainson’s Thrush Catharus ustulatus (Nuttall,  1840; eBird code:

swathr; n annotations = 1,519), Pacific-slope Flycatcher Empidonax difficilis (Baird, 1858;

eBird code: pasfly; n annotations = 1,405) and Golden-crowned Kinglet Regulus satrapa

(Lichtenstein, 1823; eBird code: gockin; n annotations = 1,368; Fig. 2).  There were 25

classes with fewer than 10 annotations (Fig. 2).

We annotated an average of 695 windows per hour (σ = 363). However, the annotation

rate varied between annotators and methods. The model-assisted method appeared to
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increase the rate for  both annotators relative to  the linear  method (Table 3);  however,

estimates are from just two annotators across 84 x 5-minute clips. As the model-produced

labels are imperfect, all segments were reviewed by a human annotator to confirm or deny

the candidate labels. Without review, biases in the trained model could be passed on to the

new model as a type of  confirmation bias (Ouali  et  al.  2020) and new biases may be

introduced  through  distribution  shifts  (Gibb  et  al.  2023).  However,  collecting  similar

windows simplified the annotation process by narrowing the label search space.

Figure 2.  

This vertical barplot visualises the frequency of annotations for the most prevalent species

within the annotated dataset. The y-axis lists species by their 2021 eBird codes, ordered from

most to least frequent (see Table 1 for common names). The x-axis displays the cumulative

annotation count for each species. More prevalent species occur towards the bottom and have

higher annotation counts. The plot reveals that a few common species dominate annotations,

while many are annotated infrequently.
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Annotation method Annotator mean sd min. max.

linear 1 651.6 274.5 333.3 1125.0

2 580.3 605.3 160.7 2250.0

model-assist 1 883.8 292.2 303.2 1582.4

2 496.3 227.0 201.4 1170.7

Two of  the aggregated biophonic  sound groups (Parulidae complex:  paruli,  Setophaga

complex:  setoph)  consisted  of  groups  of  similar  sound  types  (eBird  codes  for  sound

classes included in the Parulidae complex: macwar, naswar, wlswar, yerwar; eBird codes

for sound classes included in the Setophaga complex: btywar, herwar, towwar) that we

were  unable  to  assign  to  a  species-level  eBird  code  confidently.  Another  aggregated

biophonic sound (Unknown chip: unk) consisted of unknown avian chip calls, which we

were  also  unable  to  assign  to  a  species-level  eBird  code  confidently.  We  could  not

confidently differentiate six biotic sound groups. To gain insight into the acoustic structure

of these groups, we used t-distributed stochastic neighbour embedding (t-SNE) of BirdNET

embeddings (Hinton and Roweis  2022)  to  visualise  the acoustic  geometry.  t-SNE is  a

dimensionality  reduction  technique  that  projects  high-dimensional  data  into  lower

dimensions while  attempting to  preserve local  distances between data points  (van der

Maaten and Hinton 2008). t-SNE visualisations can be challenging to interpret because

global distances are not always preserved, but appropriate initialisation can improve global

representations (Kobak and Linderman 2021). We found that both aggregated groups of

warbler vocalisations overlapped with known examples of warbler vocalisations (Fig. 3).

Notably,  Wilson’s  Warbler  Cardellina pusilla (Wilson,  1811;  eBird  code:  wlswar)  songs

displayed  the  greatest  distinction within  the  paruli  complex.  Unknown  avian  chip

vocalisations  generally  clustered  together  and  outlying  clusters  were  polyphonic  with

additional bird songs (Fig. 4). For example, one cluster contained Setophaga songs (Fig. 4,

Panel C), while another contained Red-breasted Nuthatch songs (Fig. 4, Panel D).

In its essence, a labelled acoustic dataset is a presence-absence dataset. When we pair

species-level labels with local environmental characteristics, we can explore the relative

presence of species across environmental gradients. For example, Varied Thrush Ixoreus 

naevius (Gmelin, 1789) and Pacific Wren prefer older forests, implying that their likelihood

of  occurrence  within  such  habitats  should  be  higher  when  compared  to  the  baseline

sampling  rate  of  older  forests  and,  for  any  given  covariate,  a  species  with  a  typical

response pattern should closely align with that baseline sampling rate (Fig. 5; Hansen et al.

(1995)). Furthermore, environmental covariates are commonly used as training features in

ecological  models,  where  covariation  amongst  response  variables  and  environmental

covariates  is  leveraged  to  distinguish  and  predict  behavioural,  occurrence  and

Table 3. 

Summary statistics for the annotation rate, measured in windows annotated per hour, from two

annotators employing both linear and model-assisted annotation protocols. The summary includes

the  following  metrics:  mean,  standard  deviation  (sd),  minimum rate  (min.)  and  maximum rate

(max.).
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demographic  patterns.  For  difficult  to  distinguish  acoustic  classes,  incorporating

environmental  features  with  embeddings  could  improve  differentiation  by  providing

contextual information, as demonstrated in other fields (Tang et al. 2015, Liu et al. 2018, 

Aodha  et  al.  2019,  Terry  et  al.  2020).  For  example,  Jeantet  and  Dufourq  (2023)

incorporated  geographic  and  temporal  contextual  information  into  convolutional  neural

network-based  acoustic  classifiers  in  a  multibranch  network  structure  and  observed

decreases in false-positive rates and significant improvements in detection rates for bird

songs and Hainan gibbon Nomascus hainanus (Thomas,  1892)  calls  in  contextualised

models relative to non-contextualised baseline models. In another example, Knight et al.

(2020) incorporated signal energy into a post-processing predictive validation procedure,

which could be extended to include environmental characteristics.

Conclusion

Recent  advances  in  computational  algorithms  have  made  passive  acoustic  monitoring

more accessible (Kahl et al. 2021, Ghani et al. 2023. In part, these advances have been

Figure 3.  

Two-dimensional t-SNE (t-distributed stochastic neighbour embedding) plots of the BirdNET

embeddings for  two aggregated biotic classes and unambiguous examples from individual

species included in the aggregated classes. Each data point on the plot corresponds to an

individual 2-second audio clip. Panel A plots the t-SNE embedding for the paruli aggregated

class, which includes MacGillivray's Warbler Geothlypis tolmiei (Townsend, 1839; eBird code:

macwar), Nashville Warbler Leiothlypis ruficapilla (Wilson, 1811; eBird code: naswar), Yellow-

rumped  Warbler  Setophaga coronata (Linnaeus,  1766;  eBird  code:  yerwar)  and  Wilson's

Warbler  Cardellina pusilla (Wilson,  1811;  eBird  code:  wlswar).  Panel  B  plots  the  t-SNE

embedding for the Setophaga aggregated class, which includes Hermit Warbler Setophaga 

occidentalis (Townsend, 1837; eBird code: herwar), Townsend's Warbler Setophaga townsendi

(Townsend,  1837;  eBird  code:  towwar)  and  Black-throated  Gray  Warbler  Setophaga 

nigrescens (Townsend, 1837; eBird code: btywar). This visualisation compares the aggregated

classes to known examples from key species, evaluating the overlap of individual species

embeddings relative to their assigned aggregated class.
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driven  by  increasing  data  availability.  However,  differentiating  vocalisation  types  within

species and detecting vocalisations during periods of high vocal activity, such as the dawn

chorus,  remain challenging (Joly et  al.  2019).  To address this,  we present an acoustic

dataset focusing on these two challenges. We annotated recordings from the avian dawn

chorus period and paired them with environmental covariates at each recording location.

The dataset includes labels for within-species vocalisation types and annotations beyond

the avian community. We also provide additional unlabelled acoustic files that can be used

in the development of novel machine-learning applications.

Figure 4.  

Two-dimensional  t-SNE (t-distributed stochastic  neighbour  embedding)  plots  of  the birdnet

embeddings for the aggregated biotic unknown avian chip vocalisation class (eBird code: unk).

Each data point on the plot corresponds to an individual 2-second audio clip. Panels B, C and

D provide detailed spectrograms for selected audio clips marked by opaque black points on

the t-SNE plot. Panel B exemplifies a typical audio clip near the centre of the primary unknown

chip cluster within the t-SNE plot. Many audio clips in this cluster contain only an avian chip

vocalisation. Panel C features the spectrogram of an audio clip from the most negative sub-

cluster  along  the  t-SNE  axis  2.  Audio  clips  within  this  sub-cluster  primarily  contain

vocalisations from the aggregated Setophaga class. Panel D displays the spectrogram of an

audio clip from the most positive cluster along t-SNE axis 1. Audio clips within this cluster

predominantly consist of Red-breasted Nuthatch vocalisations.

 

Audio tagging of avian dawn chorus recordings in California, Oregon and ... 21

https://arpha.pensoft.net/zoomed_fig/10584993
https://arpha.pensoft.net/zoomed_fig/10584993
https://arpha.pensoft.net/zoomed_fig/10584993
https://doi.org/10.3897/BDJ.12.e118315.figure4
https://doi.org/10.3897/BDJ.12.e118315.figure4
https://doi.org/10.3897/BDJ.12.e118315.figure4


Acknowledgements

Acoustic data collection was funded and collected by the US Forest Service and the US

Bureau of Land Management. Annotation work was funded by Google. We thank the many

biologists who collected and processed the data compiled here. The use of trade or firm

names in this publication is for reader information and does not imply endorsement by the

U.S. Government of any product or service.

Author contributions

M.J.W., T.D. and D.B.L. conceived of the analysis. D.B.L. deployed and maintained PAM

recorders.  J.M.A.J.  and Z.R. managed annual  data management.  M.J.W.,  J.M.A.J.  and

Z.R. collated this dataset. M.J.W., T.D., A.B.F. and J.T. developed the annotation protocol.

A.B.F.  and  J.T.  annotated  the  acoustic  recordings.  M.J.W.  and  R.S.S.  collected  and

validated spatial  data extractions. M.J.W. and A.B.F. analysed the data. M.J.W. led the

writing  of  the  manuscript.  All  authors  contributed  critically  to  the  drafts  and gave final

approval for publication.

References

• 94th Congress 2nd Session (1976) National Forest Management Act. U.S. Government

Publishing Office.

Figure 5.  

Kernel density plots of species occurrence across gradients of Basal area weighted stand age

(bandwidth = 2000), Reineke’s stand density index (bandwidth = 500) and canopy cover of

conifer trees (bandwidth = 5000). The species-specific probability densities are shown relative

to  the  base  rate  of  sampling  occurrence  across  each  environmental  gradient.  Specialist

species with respect to an environmental gradient should show higher or lower probabilities

relative to the sampling base rate within some range of the environmental gradient (i.e. > or <

0), whereas generalist species for a given environmental gradient should match the sampling

base rate of occurrence (i.e. ~ 0).

 

22 Weldy M et al

https://arpha.pensoft.net/zoomed_fig/10584995
https://arpha.pensoft.net/zoomed_fig/10584995
https://arpha.pensoft.net/zoomed_fig/10584995
https://doi.org/10.3897/BDJ.12.e118315.figure5
https://doi.org/10.3897/BDJ.12.e118315.figure5
https://doi.org/10.3897/BDJ.12.e118315.figure5


• Aodha OM, Cole E, Perona P (2019) Presence-only geographical priors for fine-grained

image classification. 2019 IEEE/CVF International Conference on Computer Vision

(ICCV) https://doi.org/10.1109/iccv.2019.00969

• Appel C, Lesmeister D, Duarte A, Davis R, Weldy M, Levi T (2023) Using passive

acoustic monitoring to estimate northern spotted owl landscape use and pair

occupancy. Ecosphere 14 (2). https://doi.org/10.1002/ecs2.4421

• Baker E, Vincent S (2019) A deafening silence: a lack of data and reproducibility in

published bioacoustics research? Biodiversity Data Journal 7 https://doi.org/10.3897/

bdj.7.e36783

• Bibby CJ, Burgess ND, Hill DA, Mustoe S (2000) Bird census techniques. 2nd Edition.

Academic Press, London, 302 pp. [ISBN 9780120958313]

• Butchart SM, Walpole M, Collen B, van Strien A, Scharlemann JW, Almond RA, Baillie

JM, Bomhard B, Brown C, Bruno J, Carpenter K, Carr G, Chanson J, Chenery A, Csirke

J, Davidson N, Dentener F, Foster M, Galli A, Galloway J, Genovesi P, Gregory R,

Hockings M, Kapos V, Lamarque J, Leverington F, Loh J, McGeoch M, McRae L,

Minasyan A, Morcillo MH, Oldfield TE, Pauly D, Quader S, Revenga C, Sauer J, Skolnik

B, Spear D, Stanwell-Smith D, Stuart S, Symes A, Tierney M, Tyrrell T, Vié J, Watson R

(2010) Global biodiversity: Indicators of recent declines. Science 328 (5982):

1164‑1168. https://doi.org/10.1126/science.1187512

• Cardinale B, Duffy JE, Gonzalez A, Hooper D, Perrings C, Venail P, Narwani A, Mace G,

Tilman D, Wardle D, Kinzig A, Daily G, Loreau M, Grace J, Larigauderie A, Srivastava

D, Naeem S (2012) Biodiversity loss and its impact on humanity. Nature 486 (7401):

59‑67. https://doi.org/10.1038/nature11148

• Carey C, Ward N, Farrell K, Lofton M, Krinos A, McClure R, Subratie K, Figueiredo R,

Doubek J, Hanson P, Papadopoulos P, Arzberger P (2019) Enhancing collaboration

between ecologists and computer scientists: lessons learned and recommendations

forward. Ecosphere 10 (5). https://doi.org/10.1002/ecs2.2753

• Ceballos G, Ehrlich P, Raven P (2020) Vertebrates on the brink as indicators of

biological annihilation and the sixth mass extinction. Proceedings of the National

Academy of Sciences 117 (24): 13596‑13602. https://doi.org/10.1073/pnas.1922686117

• Clements JF, Schulenberg TS, Iliff MJ, Fredericks TA, Gerbracht JA, Lepage D,

Billerman SM, Sullivan BL, Wood CM (2022) The eBird/Clements checklist of birds of

the world. v2021.

• Conference of the Parties to the Convention on Biological Diversity (2022) U.N. Doc.

CBD/COP/DEC/15/4.

• Cowie R, Bouchet P, Fontaine B (2022) The Sixth Mass Extinction: fact, fiction or

speculation? Biological Reviews 97 (2): 640‑663. https://doi.org/10.1111/brv.12816

• Davis R, Dugger K, Mohoric S, Evers L, Aney W (2011) Northwest Forest Plan—the first

15 years (1994–2008): status and trends of northern spotted owl populations and

habitats. General Technical Report PNW-GTR-850: 1‑147. https://doi.org/10.2737/pnw-

gtr-850

• Díaz S, Settele J, Brondízio E, Ngo H, Agard J, Arneth A, Balvanera P, Brauman K,

Butchart SM, Chan KA, Garibaldi L, Ichii K, Liu J, Subramanian S, Midgley G,

Miloslavich P, Molnár Z, Obura D, Pfaff A, Polasky S, Purvis A, Razzaque J, Reyers B,

Chowdhury RR, Shin Y, Visseren-Hamakers I, Willis K, Zayas C (2019) Pervasive

human-driven decline of life on Earth points to the need for transformative change.

Science 366 (6471). https://doi.org/10.1126/science.aax3100

Audio tagging of avian dawn chorus recordings in California, Oregon and ... 23

https://doi.org/10.1109/iccv.2019.00969
https://doi.org/10.1002/ecs2.4421
https://doi.org/10.3897/bdj.7.e36783
https://doi.org/10.3897/bdj.7.e36783
https://doi.org/10.1126/science.1187512
https://doi.org/10.1038/nature11148
https://doi.org/10.1002/ecs2.2753
https://doi.org/10.1073/pnas.1922686117
https://doi.org/10.1111/brv.12816
https://doi.org/10.2737/pnw-gtr-850
https://doi.org/10.2737/pnw-gtr-850
https://doi.org/10.1126/science.aax3100


• Duan S, Zhang J, Roe P, Wimmer J, Dong X, Truskinger A, Towsey M (2013) Timed

probabilistic automaton: A bridge between raven and song scope for automatic species

recognition. Proceedings of the AAAI Conference on Artificial Intelligence 27 (2):

1519‑1524. https://doi.org/10.1609/aaai.v27i2.18993

• Duchac LS, Lesmeister DB, Dugger KM, Ruff ZJ, Davis RJ (2020) Passive acoustic

monitoring effectively detects Northern Spotted Owls and Barred Owls over a range of

forest conditions. The Condor 122 (3). https://doi.org/10.1093/condor/duaa017

• Farley SS, Dawson A, Goring SJ, Williams JW (2018) Situating ecology as a big-data

science: Current advances, challenges, and solutions. BioScience 68 (8): 563‑576. 

https://doi.org/10.1093/biosci/biy068

• Fick S, Hijmans R (2017) WorldClim 2: new 1‐km spatial resolution climate surfaces for

global land areas. International Journal of Climatology 37 (12): 4302‑4315. https://

doi.org/10.1002/joc.5086

• Franklin A, Dugger K, Lesmeister D, Davis R, Wiens JD, White G, Nichols J, Hines J,

Yackulic C, Schwarz C, Ackers S, Andrews LS, Bailey L, Bown R, Burgher J, Burnham

K, Carlson P, Chestnut T, Conner M, Dilione K, Forsman E, Glenn E, Gremel S, Hamm

K, Herter D, Higley JM, Horn R, Jenkins J, Kendall W, Lamphear D, McCafferty C,

McDonald T, Reid J, Rockweit J, Simon D, Sovern S, Swingle J, Wise H (2021) Range-

wide declines of northern spotted owl populations in the Pacific Northwest: A meta-

analysis. Biological Conservation 259 https://doi.org/10.1016/j.biocon.2021.109168

• Fukushima M, Doyle A, Mullarkey M, Mishkin M, Averbeck B (2015) Distributed acoustic

cues for caller identity in macaque vocalization. Royal Society Open Science 2 (12). 

https://doi.org/10.1098/rsos.150432

• Ghani B, Denton T, Kahl S, Klinck H (2023) Feature Embeddings from Large-Scale

Acoustic Bird Classifiers Enable Few-Shot Transfer Learning. Scientific Reports 13 (1):

22876. https://doi.org/10.1038/s41598-023-49989-z.

• Gibb KA, Eldridge A, Sandom CJ, Simpson IJA (2023) Towards interpretable learned

representations for Ecoacoustics using variational auto-encoding. bioRxiv https://

doi.org/10.1101/2023.09.07.556690

• Gibb R, Browning E, Glover‐Kapfer P, Jones K (2018) Emerging opportunities and

challenges for passive acoustics in ecological assessment and monitoring. Methods in

Ecology and Evolution 10 (2): 169‑185. https://doi.org/10.1111/2041-210x.13101

• Goëau H, Glotin H, Vellinga WP, Planqué R, Joly A (2016) LifeCLEF Bird Identification

Task 2016: The arrival of Deep learning. Working Notes of CLEF440‑449. 

• Guisan A, Weiss S, Weiss A (1999) GLM versus CCA spatial modeling of plant species

distribution. Plant Ecology 143 (1): 107‑122. https://doi.org/10.1023/a:1009841519580

• Hansen A, McComb W, Vega R, Raphael M, Hunter M (1995) Bird habitat relationships

in natural and managed forests in the West Cascades of Oregon. Ecological

Applications 5 (3): 555‑569. https://doi.org/10.2307/1941966

• Hijmans R (2023) _terra: Spatial Data Analysis_. R package version 1.7-39. URL: 

https://CRAN.R-project.org/package=terra

• Hinton G, Roweis S (2022) Stochastic neighbor embedding. In: Becker S, Thrun S,

Obermayer K (Eds) Advances in Neural Information Processing Systems, 15. The MIT

Press URL: https://proceedings.neurips.cc/paper_files/paper/2002/file/

6150ccc6069bea6b5716254057a194ef-Paper.pdf

24 Weldy M et al

https://doi.org/10.1609/aaai.v27i2.18993
https://doi.org/10.1093/condor/duaa017
https://doi.org/10.1093/biosci/biy068
https://doi.org/10.1002/joc.5086
https://doi.org/10.1002/joc.5086
https://doi.org/10.1016/j.biocon.2021.109168
https://doi.org/10.1098/rsos.150432
https://doi.org/10.1038/s41598-023-49989-z.
https://doi.org/10.1101/2023.09.07.556690
https://doi.org/10.1101/2023.09.07.556690
https://doi.org/10.1111/2041-210x.13101
https://doi.org/10.1023/a:1009841519580
https://doi.org/10.2307/1941966
https://CRAN.R-project.org/package=terra
https://proceedings.neurips.cc/paper_files/paper/2002/file/6150ccc6069bea6b5716254057a194ef-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2002/file/6150ccc6069bea6b5716254057a194ef-Paper.pdf


• Hopping WA, Kahl S, Klink H (2022) A collection of fully-annotated soundscape

recordings from the Southwestern Amazon Basin. 1. Zenodo. URL: https://doi.org/

10.5281/zenodo.7079124

• IPBES (2018) The IPBES regional assessment report on biodiversity and ecosystem

services for the Americas. https://doi.org/10.5281/zenodo.3236253

• Jeantet L, Dufourq E (2023) Improving deep learning acoustic classifiers with contextual

information for wildlife monitoring. Ecological Informatics 77 https://doi.org/10.1016/

j.ecoinf.2023.102256

• Joly A, Goëau H, Glotin H, Spampinato C, Bonnet P, Vellinga W-, Lombardo J-, Planquè

R, Palazzo S, Müller H (2019) Biodiversity information retrieval through large scale

content-based identification: a long-term evaluation. Information Retrieval Evaluation in

a Changing World 1: 389‑413. https://doi.org/10.1007/978-3-030-22948-1_16

• Kahl S, Wood C, Eibl M, Klinck H (2021) BirdNET: A deep learning solution for avian

diversity monitoring. Ecological Informatics 61 https://doi.org/10.1016/j.ecoinf.

2021.101236

• Kenall A, Harold S, Foote C (2014) An open future for ecological and evolutionary data?

BMC Evolutionary Biology 14 (1). https://doi.org/10.1186/1471-2148-14-66

• Knight EC, Sòlymosgrave P, Scott C, Bayne EM (2020) Validation prediction: a flexible

protocol to increase efficiency of automated acoustic processing for wildlife research.

Ecological Applications 30 (7): e02140. https://doi.org/10.1002/eap.2140

• Kobak D, Linderman GC (2021) Initialization is critical for preserving global data

structure in both t-SNE and UMAP. Nat Biotechnol 39: 156‑157. https://doi.org/10.1038/

s41587-020-00809-z

• Landscape Ecology Modelling Mapping and Analysis Team (LEMMA) (2020) Modeled

forest vegetation data using direct gradient analysis and nearest neighbor imputation.

2020.01. URL: https://lemma.forestry.oregonstate.edu/data

• Lassueur T, Joost S, Randin C (2006) Very high resolution digital elevation models: Do

they improve models of plant species distribution? Ecological Modelling 198: 139‑153. 

https://doi.org/10.1016/j.ecolmodel.2006.04.004

• Law B, Berner L, Buotte P, Mildrexler D, Ripple W (2021) Strategic Forest Reserves can

protect biodiversity in the western United States and mitigate climate change.

Communications Earth & Environment 2 (1). https://doi.org/10.1038/

s43247-021-00326-0

• LeBien J, Zhong M, Campos-Cerqueira M, Velev J, Dodhia R, Ferres JL, Aide TM

(2020) A pipeline for identification of bird and frog species in tropical soundscape

recordings using a convolutional neural network. Ecological Informatics 59 https://

doi.org/10.1016/j.ecoinf.2020.101113

• Lesmeister D, Jenkins JA (2022) Integrating new technologies to broaden the scope of

northern spotted owl monitoring and linkage with USDA forest inventory data. Frontiers

in Forests and Global Change 5 https://doi.org/10.3389/ffgc.2022.966978

• Lesmeister DB, Appel CL, Davis RJ, Yackulic CB, Ruff ZJ (2021) Simulating the effort

necessary to detect changes in northern spotted owl (Strix occidentalis caurina)

populations using passive acoustic monitoring. U.S. Department of Agriculture, Forest

Service, Pacific Northwest Research Station Research Paper PNW-RP-618: 1‑55. URL:

https://www.fs.usda.gov/research/treesearch/62862

Audio tagging of avian dawn chorus recordings in California, Oregon and ... 25

https://doi.org/10.5281/zenodo.7079124
https://doi.org/10.5281/zenodo.7079124
https://doi.org/10.5281/zenodo.3236253
https://doi.org/10.1016/j.ecoinf.2023.102256
https://doi.org/10.1016/j.ecoinf.2023.102256
https://doi.org/10.1007/978-3-030-22948-1_16
https://doi.org/10.1016/j.ecoinf.2021.101236
https://doi.org/10.1016/j.ecoinf.2021.101236
https://doi.org/10.1186/1471-2148-14-66
https://doi.org/10.1002/eap.2140
https://doi.org/10.1038/s41587-020-00809-z
https://doi.org/10.1038/s41587-020-00809-z
https://lemma.forestry.oregonstate.edu/data
https://doi.org/10.1016/j.ecolmodel.2006.04.004
https://doi.org/10.1038/s43247-021-00326-0
https://doi.org/10.1038/s43247-021-00326-0
https://doi.org/10.1016/j.ecoinf.2020.101113
https://doi.org/10.1016/j.ecoinf.2020.101113
https://doi.org/10.3389/ffgc.2022.966978
https://www.fs.usda.gov/research/treesearch/62862


• Li JB, Qu S, Huang P, Metze F (2022) AudioTagging Done Right: 2nd comparison of

deep learning methods for environmental sound classification. arXiv https://doi.org/

10.48550/arxiv.2203.13448

• Lint J, Noon B, Anthony R, Forsman E, Raphael M, Collopy M, Starkey E (1999)

Northern spotted owl effectiveness monitoring plan for the Northwest Forest Plan. U.S.

Department of Agriculture, Forest Service, Pacific Northwest Research Station General

Technical Report PNW-GTR-440: 1‑4. https://doi.org/10.2737/pnw-gtr-440

• Liu Y, Sheng L, Shao J, Yan J, Xiang S, Pan C (2018) Multi-label image classification

via knowledge distillation from weakly-supervised detection. Proceedings of the 26th

ACM international conference on Multimedia700‑708. https://doi.org/

10.1145/3240508.3240567

• McNamara JM, Mace RH, Houston AI (1987) Optimal daily routines of singing and

foraging in a bird singing to attract a mate. Behavioral Ecology and Sociobiology 20 (6):

399‑405. https://doi.org/10.1007/bf00302982

• Morfi V, Bas Y, Pamuła H, Glotin H, Stowell D (2019) NIPS4Bplus: a richly annotated

birdsong audio dataset. PeerJ. Computer Science 5: e223. https://doi.org/10.7717/

peerj-cs.223

• Mots'oehli M, Baek K (2023) Deep active learning in the presence of label noise: A

survey. arXiv https://doi.org/10.48550/arxiv.2302.11075

• Mumm CS, Knörnschild M (2014) The vocal repertoire of adult and neonate giant otters

(Pteronura brasiliensis). PLOS One 9 (11). https://doi.org/10.1371/journal.pone.0112562

• Ohmann JL, Gregory MJ (2002) Predictive mapping of forest composition and structure

with direct gradient analysis and nearest- neighbor imputation in coastal Oregon, U.S.A.

Canadian Journal of Forest Research 32 (4): 725‑741. https://doi.org/10.1139/x02-011

• Oliver R, Meyer C, Ranipeta A, Winner K, Jetz W (2021) Global and national trends,

gaps, and opportunities in documenting and monitoring species distributions. PLOS

Biology 19 (8). https://doi.org/10.1371/journal.pbio.3001336

• Ouali Y, Hudelot C, Tami M (2020) An Overview of Deep Semi-Supervised Learning.

arXiv https://doi.org/10.48550/arxiv.2006.05278

• Pebesma E (2018) Simple features for R: Standardized support for spatial vector data.

The R Journal 10 (1). https://doi.org/10.32614/rj-2018-009

• Pebesma E, Bivand R (2023) Spatial data science: With applications in R. 1. Chapman

and Hall/CRC, 314 pp. [ISBN 9780429459016] https://doi.org/10.1201/9780429459016

• Pieplow N (2019) Field Guide to Bird Sounds of Western North America. Houghton

Mifflin Harcourt, 648 pp. [ISBN 0547905572]

• Poisot T, Mounce R, Gravel D (2013) Moving toward a sustainable ecological science:

don't let data go to waste! Ideas in Ecology and Evolution 6 (2). https://doi.org/10.4033/

iee.2013.6b.14.f

• Prat Y, Taub M, Pratt E, Yovel Y (2017) An annotated dataset of Egyptian fruit bat

vocalizations across varying contexts and during vocal ontogeny. Scientific Data 4 (1). 

https://doi.org/10.1038/sdata.2017.143

• Priyadarshani N, Marsland S, Castro I (2018) Automated birdsong recognition in

complex acoustic environments: a review. Journal of Avian Biology 49 (5): jav-01447. 

https://doi.org/10.1111/jav.01447

• R Core Team (2021) R: A language and environment for statistical computing. R

Foundation for Statistical Computing. URL: https://www.R-project.org

26 Weldy M et al

https://doi.org/10.48550/arxiv.2203.13448
https://doi.org/10.48550/arxiv.2203.13448
https://doi.org/10.2737/pnw-gtr-440
https://doi.org/10.1145/3240508.3240567
https://doi.org/10.1145/3240508.3240567
https://doi.org/10.1007/bf00302982
https://doi.org/10.7717/peerj-cs.223
https://doi.org/10.7717/peerj-cs.223
https://doi.org/10.48550/arxiv.2302.11075
https://doi.org/10.1371/journal.pone.0112562
https://doi.org/10.1139/x02-011
https://doi.org/10.1371/journal.pbio.3001336
https://doi.org/10.48550/arxiv.2006.05278
https://doi.org/10.32614/rj-2018-009
https://doi.org/10.1201/9780429459016
https://doi.org/10.4033/iee.2013.6b.14.f
https://doi.org/10.4033/iee.2013.6b.14.f
https://doi.org/10.1038/sdata.2017.143
https://doi.org/10.1111/jav.01447
https://www.R-project.org


• Robinson WD, Partipilo C, Hallman T, Fairchild K, Fairchild J (2019) Idiosyncratic

changes in spring arrival dates of Pacific Northwest migratory birds. PeerJ 7 https://

doi.org/10.7717/peerj.7999

• Sappington JM, Longshore KM, Thompson DB (2010) Quantifying landscape

ruggedness for animal habitat analysis: A case study using bighorn sheep in the Mojave

Desert. The Journal of Wildlife Management 71 (5): 1419‑1426. https://doi.org/

10.2193/2005-723

• Shonfield J, Bayne EM (2017) Autonomous recording units in avian ecological research:

current use and future applications. ACE 12 (1): art14. https://doi.org/10.5751/

ACE-00974-120114

• Song H, Kim M, Park D, Shin Y, Lee J (2022) Learning from noisy labels with deep

neural networks: A survey. IEEE Transactions on Neural Networks and Learning

Systems1‑19. https://doi.org/10.1109/tnnls.2022.3152527

• Staicer CA, Spector DA, Horn AG (1996) The dawn chorus and other diel patterns in

acoustic signaling. In: Kroodsma DE, Miller EH (Eds) Ecology and evolution of acoustic

communication in birds. Cornell University Press https://doi.org/

10.7591/9781501736957-033

• Stonebraker M, Rezig EK (2019) Machine learning and big data: What is important?

IEEE Data Engineering Bulletin 42: 3‑7. 

• Stowell D, Wood M, Pamuła H, Stylianou Y, Glotin H (2018) Automatic acoustic

detection of birds through deep learning: The first Bird Audio Detection challenge.

Methods in Ecology and Evolution 10 (3): 368‑380. https://doi.org/10.1111/2041-210x.

13103

• Stowell D (2022) Computational bioacoustics with deep learning: a review and

roadmap. PeerJ 10: e13152. https://doi.org/10.7717/peerj.13152

• Sugai LSM, Silva TSF, Ribeiro JW, Llusia D (2019) Terrestrial Passive Acoustic

Monitoring: Review and Perspectives. BioScience 69 (1): 15‑25. https://doi.org/10.1093/

biosci/biy147

• Tang K, Paluri M, Fei-Fei L, Fergus R, Bourdev L (2015) Improving image classification

with location context. 2015 IEEE International Conference on Computer Vision (ICCV)

https://doi.org/10.1109/iccv.2015.121

• Teixeira D, Maron M, van Rensburg B (2019) Bioacoustic monitoring of animal vocal

behavior for conservation. Conservation Science and Practice 1 (8). https://doi.org/

10.1111/csp2.72

• Terry JCD, Roy H, August T (2020) Thinking like a naturalist: Enhancing computer

vision of citizen science images by harnessing contextual data. Methods in Ecology and

Evolution 11 (2): 303‑315. https://doi.org/10.1111/2041-210x.13335

• Thessen A (2016) Adoption of machine learning techniques in ecology and earth

science. One Ecosystem 1 https://doi.org/10.3897/oneeco.1.e8621

• Tosa M, Dziedzic E, Appel C, Urbina J, Massey A, Ruprecht J, Eriksson C, Dolliver J,

Lesmeister D, Betts M, Peres C, Levi T (2021) The rapid rise of next-generation natural

history. Frontiers in Ecology and Evolution 9 https://doi.org/10.3389/fevo.2021.698131

• Tuia D, Kellenberger B, Beery S, Costelloe B, Zuffi S, Risse B, Mathis A, Mathis M, van

Langevelde F, Burghardt T, Kays R, Klinck H, Wikelski M, Couzin I, van Horn G, Crofoot

M, Stewart C, Berger-Wolf T (2022) Perspectives in machine learning for wildlife

conservation. Nature Communications 13 (1). https://doi.org/10.1038/

s41467-022-27980-y

Audio tagging of avian dawn chorus recordings in California, Oregon and ... 27

https://doi.org/10.7717/peerj.7999
https://doi.org/10.7717/peerj.7999
https://doi.org/10.2193/2005-723
https://doi.org/10.2193/2005-723
https://doi.org/10.5751/ACE-00974-120114
https://doi.org/10.5751/ACE-00974-120114
https://doi.org/10.1109/tnnls.2022.3152527
https://doi.org/10.7591/9781501736957-033
https://doi.org/10.7591/9781501736957-033
https://doi.org/10.1111/2041-210x.13103
https://doi.org/10.1111/2041-210x.13103
https://doi.org/10.7717/peerj.13152
https://doi.org/10.1093/biosci/biy147
https://doi.org/10.1093/biosci/biy147
https://doi.org/10.1109/iccv.2015.121
https://doi.org/10.1109/iccv.2015.121
https://doi.org/10.1111/csp2.72
https://doi.org/10.1111/csp2.72
https://doi.org/10.1111/2041-210x.13335
https://doi.org/10.3897/oneeco.1.e8621
https://doi.org/10.3389/fevo.2021.698131
https://doi.org/10.1038/s41467-022-27980-y
https://doi.org/10.1038/s41467-022-27980-y


• U.S. Department of Agriculture Forest Service, U.S. Department of the Interior Bureau

Land Management (1994) Standards and guidelines for management of habitat for late-

successional and old-growth forest related species within the range of the Northern

Spotted Owl. 

• U.S. Department of Agriculture Forest Service, U.S. Department of the Interior Bureau

of Land Management (1994) Record of Decision for Amendments to Forest Service and

Bureau of Land Management Planning Documents Within the Range of the Northern

Spotted Owl.

• U.S. Fish and Wildlife Service (2020) 50 CFR part 17 endangered and threatened

wildlife and plants; 12-month finding for the Northern Spotted Owl. Federal Register 85

(241): 81144‑81152. 

• van der Maaten L, Hinton GE (2008) Visualizing data using t-SNE. Journal of Machine

Learning Research 9 (86): 2579‑2605. 

• Vidaña-Vila E, Navarro J, Alsina-Pagès RM (2017) An annotated and segmented

acoustic dataset of 7 Picidae species. version v1. [dataset]. Zenodo. URL: https://

doi.org/10.5281/zenodo.574438

• Wall C, Haver S, Hatch L, Miksis-Olds J, Bochenek R, Dziak R, Gedamke J (2021) The

next wave of passive acoustic data management: How centralized access can enhance

science. Frontiers in Marine Science 8 https://doi.org/10.3389/fmars.2021.703682

• Weldy MJ, Lesmeister DB, Yackulic CB, Appel CL, McCafferty C, Wiens JD (2023)

Long-term monitoring in transition: Resolving spatial mismatch and integrating

multistate occupancy data. Ecological Indicators 146: 109815. https://doi.org/10.1016/

j.ecolind.2022.109815

• Whang SE, Lee J (2020) Data collection and quality challenges for deep learning.

Proceedings of the VLDB Endowment 13 (12): 3429‑3432. https://doi.org/

10.14778/3415478.3415562

• Wiess AD (1999) Topographic position and landform analysis. 

• Zhang V, Celis-Murillo A, Ward M (2015) Conveying information with one song type:

changes in dawn song performance correspond to different female breeding stages.

Bioacoustics 25 (1): 19‑28. https://doi.org/10.1080/09524622.2015.1076348

28 Weldy M et al

https://doi.org/10.5281/zenodo.574438
https://doi.org/10.5281/zenodo.574438
https://doi.org/10.3389/fmars.2021.703682
https://doi.org/10.1016/j.ecolind.2022.109815
https://doi.org/10.1016/j.ecolind.2022.109815
https://doi.org/10.14778/3415478.3415562
https://doi.org/10.14778/3415478.3415562
https://doi.org/10.1080/09524622.2015.1076348

	Abstract
	Background
	New information

	Keywords
	Introduction
	Project description
	Sampling methods
	Geographic coverage
	Taxonomic coverage
	Temporal coverage
	Usage licence
	Data resources
	Additional information
	Acoustic recordings
	Data dictionaries
	Results and Discussion
	Conclusion

	Acknowledgements
	Author contributions
	References

