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Abstract

spind is an R package aiming to provide a useful toolkit to account for spatial dependence
in the analysis of lattice data. Grid-based data sets in spatial modelling often exhibit spatial
dependence, i.e. values sampled at nearby locations are more similar than those sampled
further  apart.  spind methods,  described  here,  take  this  kind  of  two-dimensional
dependence into account and are sensitive to its variation across different spatial scales.
Methods  presented  to  account  for  spatial  autocorrelation  are  based  on  the  two
fundamentally different approaches of generalised estimating equations as well as wavelet-
revised methods. Both methods are extensions to generalised linear models. spind also
provides  functions  for  multi-model  inference  and  scaling  by  wavelet  multiresolution
regression.  Since  model  evaluation  is  essential  for  assessing  prediction  accuracy  in
species  distribution  modelling,  spind  additionally  supplies  users  with  spatial  accuracy
measures, i.e. measures that are sensitive to the spatial arrangement of the predictions. 
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Introduction

Grid-based data  sets,  whether  they are biodiversity  data  such as  species  distributions,
species  abundance  or  trait  data  or  sets  of  ecosystem  service  values,  sociological  or
economic indices, of concentrations of pollutants, soil or hydrological properties, are often
used in spatial modelling and may exhibit some degree of spatial dependence. This means
that sampling at nearby locations may lead to sample values that are more similar than
those  further  apart  (Tobler  1970,  Legendre  1993).  In  such  cases,  the  assumption  of
independently and identically distributed errors is violated in standard regression models.
Consequently, estimates of standard errors and type I error rates can be biased (Dormann
et  al.  2007,  Lennon 2000).  Although a  variety  of  spatial  statistical  methods taking the
spatial autocorrelation into account already exist in R (R Core Team 2016), there is, to our
knowledge, still a lack of user-optimised models running for both presence/absence (binary
response) and species abundance data (Poisson or normally distributed response) and,
last but not least, running as computationally fast and efficient procedures. It is believed
that the spatial statistical methods included in the spind package and described here can
contribute to filling this gap.

Various  spatial  methods  are  available  to  account  for  spatial  autocorrelation  in  multiple
linear regressions (e.g. Dormann et al. 2007, Beale et al. 2010, Hefley et al. 2017). Here,
two methods are offered that are based on the two fundamentally different approaches of
generalised estimating equations (GEE) (Zeger and Liang 1986, Yan and Fine 2004, Carl
and Kühn 2007) on the one hand and wavelet-revised methods (WRM) (Carl and Kühn
2008, Carl and Kühn 2010) on the other. These methods are extensions of the generalised
linear  model  (GLM).  Moreover,  spind provides multi-model  inference functions for  both
approaches.  Additionally,  spatial  scaling  is  possible,  for  instance,  with  wavelet
multiresolution  regression  (WMRR).  WMRR  is  a  scale-specific  regression  that,  when
combined with a multimodel inference approach, is able to evaluate the relative importance
of several variables across different spatial scales. In addition to these methods and their
helper functions, spind supplies users with functions for assessing prediction accuracy. In
a  spatial  context,  the  traditional  non-spatial  accuracy  measures  can  be  misleading,
particularly  when  sampling  on  raster  maps.  Therefore,  spind provides  generalised,
spatially corrected performance metrics that are sensitive to the spatial arrangement of the
predictions and are analogous to classical metrics. Specifically, they take into account the
proximity of modelled to observed (actual) values by still being based on and comparable
to measures such as AUC, Kappa, sensitivity, specificity or True Skills Statistics.
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Installation

Package spind is available on CRAN and can be downloaded there. See: https://CRAN.R-
project.org/package=spind. The development version is available on GitHub as well. See: h
ttps://github.com/levisc8/spind. 

 

# Install from CRAN 

install.packages('spind') 

# Install development version from GitHub

devtools::install_github('levisc8/spind') 

Usage

Wavelet-Revised Models (WRM)

Next, the other main model that is introduced in this package is explained- the wavelet-
revised model (Carl and Kühn 2010). WRMs, like GLMs, can be used to fit linear models
for response variables with different distributions: Gaussian, binomial or Poisson. WRMs,
like GEEs, are extensions of GLMs for autocorrelated variables, i.e. models in which the
residuals  can  be  autocorrelated.  As  wavelet-based  methods,  however,  they  are
mathematically quite different to GEEs. The crucial idea behind wavelet analysis can be
formulated as follows:  wavelets are small  waves,  that  is,  localised oscillating functions.
Such a brief oscillation can locally be compared with a segment of a given data set. A
corresponding wavelet coefficient is able to capture the degree of similarity. Shifting the
wavelet along the data set, this comparison can be done at several locations. Furthermore,
one  can  reanalyse  the  data  set  with  gradually  compressed  or  stretched  wavelets,  i.e.
wavelets  of  different  oscillating  behaviour,  which  correspond  to  different  scales  or
resolutions. Viewed from this perspective, each wavelet acts as both window and filter. The
wavelet characterised by a certain, strictly limited range opens a window to a subset of
data belonging to this area and the wavelet selecting a frequency to be investigated helps
for feature extraction in this area.

This means that wavelet analysis can be used for spatial filtering similar to the principal
coordinates  of  neighbour  matrices  (PCNM)  analysis  (e.g. Borcard  et  al.  2004) or  its
generalisation, the Moran’s eigenvector maps (MEM) approach (Dray et al. 2006). However
wavelet analysis  is  a  refinement  of  such  methods.  While  PCNM/MEM  methods  are
statistical versions of Fourier analysis (i.e. the spatial eigenvectors that they use for filtering
are basically sinusoidal waves spread out over the whole spatial data set), wavelets (i.e.
small waves visualisable as localised oscillations) additionally act as windows. Therefore,
PCNM/MEM and wavelet methods differ in their  ability to detect local  variations and to
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make  local  adjustments  (Carl  et  al.  2016).  Wavelet  analysis  is  locally  more  accurate
compared to Fourier analysis. It  has proven to be a suitable method to quantify spatial
structure as a function of both location and scale (Carl and Kühn 2008).

The number and kind of coefficients in discrete wavelet transforms depend on the number
and kind of wavelets used in the analysis. Briefly, there are two kinds of coefficients: detail
and smooth ones. These reflect the different oscillating behaviour and distinguish between
highly  varying  (detailed)  and  slowly  varying  (smooth)  parts.  This  enables  the  user  to
decompose and to filter a data set in relation to its locally varying frequency characteristics.
 The wavelet filters are implemented using wavelet transforms from the waveslim package
(Whitcher 2015).

Different from other methods such as PCNM/MEM, the wavelet filters in thisapproach are
applied  to  the  response  variable  as  well  as  all  explanatory  variables  in  a  multiple
regression.  Moreover,  they  are  applied  within  every  step  of  GLM iteration  before  the
regression coefficients are computed (Carl  and Kühn 2008,  Carl  and Kühn 2010).  This
process of pre-filtering within GLM iteration is carried out without any additional covariates
or  regression  coefficients.  That  is  why  this  approach  is  also  not  comparable  to  a
geographically weighted regression. Instead, it is a single GLM performed on consistently
filtered variables. 

Spatial  autocorrelation  occurs  when  data  sampled  at  adjacent  locations  exhibit  more
similar values than distant ones. This feature is detectable by the coefficients of smooth
and relatively  small  wavelets.  In  WRMs, therefore,  such kind of  coefficients are always
removed and thus smooth (i.e. low frequency) parts of data and, as a consequence, spatial
autocorrelation. The tuning parameter level is a preset for the window size, that is,  the
range of all smooth wavelets. Sequentially setting level to lower integers allows the method
to  be adapted  to  one's  data  and  autocorrelation gradually  reduced,  where  strongest
reduction can be found at the finest resolution, with level=1 usually working best.

For illustration, WRM is presented using the same musdata data set as above.

 

mwrm <- WRM(musculus ~ pollution + exposure, family = "poisson", data = musdata, 

coord = coords, level = 1, plot = TRUE) 

summary(mwrm) 

predictions <- predict(mwrm, newdata = musdata) 

 

All  calculations can be performed using different types of wavelet families and different
types of wavelet transforms, where haar for wavelet and dwt for transform is the default. To
minimise boundary effects, WRM offers different options for embedding data collected in
two-dimensional space in the larger frame of a square matrix. This can be done either by
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padding with  zeros,  mean values or  reflected values at  boundaries acting like mirrors.
Therefore,  there are different  settings for  padform  in pad=list(…).  Moreover,  there is  a
factor padzone in pad=list(…) for expanding the padding zone.

 

 

Figure 1.  

Autocorrelation  of  residuals  from  GEE  and  in  comparison  to  GLM.  GEE  with  correlation
structure: fixed performed best for the musdata data set. Spatial autocorrelation is computed
as Moran’s I  using the acfft function.  The figure depicts simulated occurrence data of  Mus
musculus in response to the degree of pollution and the degree of exposure (for instance, to
light, noise or other hypothetical risk factors).

 

Figure 2.  

Autocorrelation of residuals from WRM in comparison to GLM. WRM with level 1 performed
best for the musdata data set. Spatial autocorrelation is computed as Moran’s I using the acfft 
function.
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WRM has many of the same features as GEE. Setting plot=TRUE allows the examination
of the autocorrelation of residuals from a GLM of the same family as the WRM and passing
further ggplot2 functions to customize_plot allows the user to manually add or subtract the
required features (Fig. 2). Methods for WRM (summary.WRM and predict.WRM) allow the
user to examine outputs from the model using the same code as might be used for a GLM.
However, note that this reports an AIC (and AICc) score, rather than a QIC score as in the
GEE.

Wavelet multiresolution regression (WMRR)

Having  filtered  all  data  sets  in  relation  to  their  frequency  characteristics  and  removed
smooth parts with a WRM, one can additionally decompose the detail (i.e. high frequency)
parts  into  scale-specific  subcomponents.  One  is  then  able  to  develop  a  scale-specific
regression technique, subsequently known as wavelet multiresolution regression (Carl et
al.  2016).  Note  that  this  kind  of  regression  does  not  aim  for  autocorrelation  removal.
Instead, it aims at scale-dependent or cross-scale investigations. In detail, this means that
a scale-specific wavelet multiresolution regression, scaleWMRR, keeping only detail parts
of a certain scale level, accounts for fluctuations or spatial variations at a specific spatial
resolution. Moreover, note that scaleWMRR at scale=1 (and for detail=TRUE) is the same
as WRM at level=1, as there are further decompositions into lesser objects only for scale =
2. Note that a switch is being made to the carlinadata data set now.

data(carlinadata) 

coords <- carlinadata[ ,4:5] 

 

# scale-specific regressions for detail components 

ms2 <- scaleWMRR(carlina.horrida ~ aridity + land.use, 

family = "poisson", data = carlinadata, coord = coords, scale = 2, trace = TRUE) 

 

ms3 <- scaleWMRR(carlina.horrida ~ aridity + land.use, 

family = "poisson", data = carlinadata, coord = coords, scale = 3, trace = TRUE) 

 

aic<-aic.calc(carlina.horrida ~ aridity + land.use, family = "poisson", data = carlinadata, 

mu = ms3$fitted) 

aic 
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It  is important to mention that it  is  essential  to avoid comparisons of significance tests
across scales. This is due to the fact that the sample size in general changes when scale-
specific subcomponents are eliminated. However, in order to provide a consistently good
quality criterion, there is the possibility to calculate log likelihoods and AIC values and then
estimate the relative importance of a variable using the approach of model selection based
on multimodel inference (MMI)(see below).

Generalised estimating equations (GEE)

The generalised estimating equations approach developed by Zeger and Liang (1986) is
an extension of generalised linear models, but in which the outcomes are not assumed to
be independent. Therefore, GEEs, by contrast to GLMs, allow for autocorrelated residuals.
GEEs, in analogy with GLMs, can be used to fit linear models for response variables with
different distributions: Gaussian, binomial or Poisson. Mathematically, the variance of the
response  is  replaced  by  a  variance-covariance  matrix  which  takes  into  account  that
observations  are  not  independent.  Originally,  the  approach  has  been  developed  for
analysing longitudinal data. This approach was modified to use GEE models for spatial,
two-dimensional  data  sets  sampled  in  rectangular  grids  (Carl  and  Kühn  2007). This
package utilises the functions already written for  GEEs from the packages gee (Carey
2015) and geepack (Yan 2002, Yan and Fine 2004, Halekoh et al. 2006). These spatial
GEEs are adapted for easy use in the context of spatial modelling and can handle the
following correlation structures (corstr argument): 1) independence: this is the same as a
GLM, because the identity  matrix  is  used as correlation matrix.  2)  fixed:  all  correlation
parameters are fixed and the correlation structure is predetermined by an isotropic power
function, which is adapted to the residual autocorrelation of the generalised linear model. It
will not change during an iterative procedure. 3) Clustered: correlation parameters are to be
estimated.  To  reduce  the  number  of  parameters,  the  variance-covariance  matrix  is
assumed to be of block diagonal form. There are two options. 3a) exchangeable: specifies
that  all  parameters  within  blocks  must  be  equal.  3b)  quadratic: specifies  that  certain
parameters must be equal, with the result  that the strength of correlation is always the
same at  a  certain  distance.  For  these  cluster  models,  different  values  for  cluster  size
cluster are allowed. 

To  illustrate  the  use  of  the  package,  a  GEE model  is  presented using  the  generated
musdata  data  set  included in  the  package.  The following  code uses  already  available
datasets and provides R examples:

library(spind) 

data(musdata) 

 

# Fit a GEE and view the output 

coords <- musdata[ ,4:5] 
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mgee <- GEE(musculus ~ pollution + exposure, family = "poisson", 

data = musdata, coord = coords, corstr = "fixed", plot = TRUE, scale.fix = FALSE) 

summary(mgee, printAutoCorPars = TRUE) 

predictions <- predict(mgee, newdata = musdata) 

 

spind includes methods for GEEs  (summary.GEE and predict.GEE). These are useful in
evaluating model fit and autocorrelation of residuals compared to a non-spatial model (in
spind, this is a GLM with the same family as the GEE). Additionally, one can use the plot 
and customize_plot arguments  in  GEE  to  visually  inspect  the  autocorrelation  of  the
residuals from each regression and edit  the plot  using ggplot2 style inputs (Fig.  1).  For
GEE models, the authors use normalised Pearson residuals, which are normalised in terms
of correlation, to check whether and how far the autocorrelation is reduced. Note that a QIC
(Quasi-information Criterion) score is reported as opposed to AIC. This is calculated based
on the method described in Hardin and Hilbe (2003) (see also: Barnett et al. 2010) and is
implemented using the function qic.calc.

One drawback to non-clustered methods for GEEs arises from the way that R handles
matrices.  Trying  to  fit  GEEs  with  corstr="fixed" to  large  data  sets  (i.e.  the  number  of
observations is  approximately  sqrt(.Machine$integer.max))  will  result  in  errors,  as  the
resulting variance-covariance matrices will be too large to be handled in R. This is where
fitting clustered models is useful, as they work with smaller, more manageable matrices.
These  can  be  specified  by  changing  the  corstr argument  to  either  "quadratic" or
"exchangeable".

Specification

Other features specific to wavelets

The  package  includes  other  functions  that  may  be  useful  in  diagnosing  scale-specific
features.

For example, the user might want to plot the wavelet variance or covariance of each of the
variables as a function of level. The covar.plot function allows the user to visually examine
the  wavelet  relationships  from  the model.  For  wavelet  variance  and  covariance
computation,  the  wavelet  family  d4 and  the  wtrafo  =  "modwt" were  found  to  be
mathematically more appropriate than others (Carl et al. 2016).

covar.plot(carlina.horrida ~ aridity + land.use - 1, 

           data = carlinadata, coord = coords, wavelet = "d4", 
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           wtrafo = "modwt", plot = "var") 

covar.plot(carlina.horrida ~ aridity + land.use - 1, 

           data = carlinadata, coord = coords, wavelet = "d4", 

           wtrafo = "modwt", plot = "covar") 

 

The user may also want to view the smooth (i.e. slowly varying) components of any spatial
data set at different resolutions. For this, the upscale function is offered, which allows the
user to visually examine his/her data. The data sampled on a grid of squared cells and
mostly sampled on adjacent cells may have any external contour. A square is used that
embeds or completely encapsulates the data. Therefore, it becomes visible as a surface in

 
Figure 3.  

Smooth components  of  wavelet  decompositions  at  different  scale  levels.  The upscaling  is
performed by the upscale function for variable aridity belonging to carlinadata data set. The
data represent a square region. (Any region is extended to the next or next but one square of 2
x2 grid cells and is padded with predefined values, default is mean value, by the function

provided.  Thus  the  data  recorded  is  available  in  a  form  that  enables  wavelet  analyses.)
Level=0  displays  the  raw,  full-resolution  predictor  values,  which  are  then  "aggregated"  by
wavelets to ever coarser resolutions. Values increase from black to white. This function can be
applied to any variable of interest, e.g. predictor, response or residuals.

 

n n 
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a square.  This square consists of  2 x 2  grid cells allowing a dyadic up-scaling for a
number of different levels of scale. This means that the procedure of up-scaling related to
the resolution level can be imagined as a two-dimensionally gradual enlargement of cell
sizes (Carl et al. 2016).  The function upscale offers the option to adjust padding settings
so the user can see how that influences the results. The default is mean values of the input
vector, but it can be easily switched using the pad argument, which works the same way as
in the other WRM functions. In the example below, one of the covariates of the carlinadata
data set (Fig. 3) is used. As can be seen, in this case, the external structure of the data set
is a square.

upscale(f = carlinadata$aridity, coord = coords) 

Multi-model inference with GEEs, WRMs, and WMRRs

spind provides  a  couple  of  frameworks  for  conducting  multi-model  inference  analyses
(Burnham and Anderson 2002). The first that is introduced here is the step.spind function,
which  implements  step-wise  model  selection.  The  process  is  loosely  based  on
MASS::stepAIC and  stats::step,  but  is  specific  to  classes  GEE and  WRM.  For  GEEs,
step.spind uses models with the lowest QIC scores to determine what the next step will be.
For WRMs, one has the option of using AIC or AICc (AIC corrected for small sample sizes)
using the logical AICc argument.

Currently, the function only supports backwards model selection. In other words, one has to
start with a full model (i.e. all of the variables in your model formula) and they are removed
in  a  stepwise  fashion.  It  is  intended  to  add  forward  model  selection  methods  shortly.
Additionally, step.spind is written to always respect the hierarchy of variables in the model
and the user cannot override this currently. For example, step.spind would not remove a
main effect if the variable was still present as an interaction or polynomial, e.g. removing
race while retaining I(race^2).

An example of  step.spind using a GEE on the birthwt data set  is  shown in the MASS
package below. The data in birthwt are not actually spatially explicit;  a grid structure is
imposed  on  them  artificially. However, it  is hoped  that  in  using  this  data  set,  it  will
be demonstrated how this function can work with many types of data.

 

library(MASS) 

data(birthwt) 

# impose an artificial (not fully appropriate) grid structure 

x <- rep(1:14,14) 

y <- as.integer(gl(14,14)) 

n n
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coords <- cbind(x[-(190:196)],y[-(190:196)]) 

formula <- formula(low ~ age + lwt + race + smoke + ftv +  bwt + I(race^2)) 

 

mgee <- GEE(formula = formula, family="gaussian", data=birthwt, 

          coord=coords, corstr="fixed",scale.fix=TRUE) 

mwrm <- WRM(formula = formula, family="gaussian", data=birthwt, 

          coord=coords, level=1) 

 

ssgee <- step.spind(object = mgee,data = birthwt) 

sswrm <- step.spind(object = mwrm, data = birthwt, AICc=TRUE, trace = FALSE)

 

best.mgee <- GEE(formula = ssgee$model, family = "gaussian", data=birthwt, 

           coord=coords, corstr="fixed",scale.fix=TRUE) 

best.wrm <- WRM(formula = sswrm$model, family="gaussian", data=birthwt, 

           coord=coords, level = 1) 

 

summary(best.mgee,printAutoCorPars=FALSE) 

summary(best.wrm) 

 

Additionally, multimodel inference tools are offered for GEEs, WRMs and WMRRs which
are loosely based on the MuMIn package.  These are implemented in mmiWMRR and
mmiGEE. They enable the user to examine the effect that the grid resolution and variable
selection have on the resulting regressions and then to select the appropriate model for
subsequent  analyses.  Note  that  mmiWMRR has  two  more  arguments  than  mmiGEE.
Moreover, settings will be changed in WRM and scaleWMRR for illustrative purposes. For
two-dimensional wavelet models in geographical applications, the wavelet family d4 was
found to be mathematically appropriate as well (Carl et al. 2016).  The padzone has been
increased from 1 to 1.1 to account for embedding in a variety of geographical areas.

# Example for WRMs 

data(carlinadata) 
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coords <- carlinadata[,4:5] 

 

wrm <- WRM(carlina.horrida ~ aridity + land.use, family = "poisson", 

data = carlinadata, coord = coords,level=1,wavelet="d4",pad=list(padzone=1.1)) 

 

ms1 <- scaleWMRR(carlina.horrida ~ aridity + land.use, family = "poisson", 

data  = carlinadata, coord  = coords,scale=1,wavelet='d4',  pad=list
(padzone=1.1),trace=TRUE) 

 

mmi <- mmiWMRR(object = wrm, data=carlinadata, scale=1, detail=TRUE,trace=TRUE) 

 

# Example for GEEs 

library(MASS) 

data(birthwt) 

# impose an artificial (not fully appropriate) grid structure 

x <- rep(1:14,14) 

y <- as.integer(gl(14,14)) 

coords <- cbind(x[-(190:196)],y[-(190:196)]) 

formula <- formula(low ~ race + smoke +  bwt) 

 

mgee <- GEE(formula = formula, family = "gaussian", data = birthwt, 

         coord=coords, corstr="fixed", scale.fix=TRUE) 

 

mmi <- mmiGEE(object = mgee, data = birthwt) 

 

Finally,  one further  tool is  offered for  model  selection  specific  to  WMRRs.  rvi.plot uses
mmiWMRR and creates a plot of the relative importance for each explanatory variable as a
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function of the resolution of the grid (in other words, as a function of the scale argument in
mmiWMRR). It will also print the resulting model selection tables to the console. The output
can help the user in choosing the most appropriate variables for subsequent analyses.

 

data(carlinadata) 

coords <- carlinadata[,4:5] 

 

rvi.plot(carlina.horrida ~ aridity + land.use, family = "poisson", 

         data=carlinadata,coord=coords,maxlevel=4,detail=TRUE,wavelet="d4",trace=TRUE) 

Goodness of fit and model performance

Using  an  appropriate  accuracy  measure  is  essential  for  assessing  prediction  quality
in modelling  spatially  explicit  data.  Goodness  of  fit measures  such  as  Cohen's  kappa
coefficient, receiver operating characteristic (ROC), the area under the ROC curve (AUC)
and  maximum true  skill  statistic  (TSS)  are  widely  used  to  assess  prediction  errors  in
presence/absence models.  There are some problems,  especially  related to prevalence,
with more traditional measures such as AUC and hence TSS is recommended nowadays
(e.g.  Lobo et  al.  2008,  Jiménez-Valverde et  al.  2008,  Jiménez-Valverde 2014).  Despite
these warnings,  these measures have been implemented to  facilitate  comparisons  with
older  papers  and  their  results.  In  a  spatial  context,  however,  these  measures  can  be
misleading. The reason is that a false prediction has the quality of being false regardless of
its distance to an appropriate actual (observed) value and thus true prediction.  One can
indeed ask the question:  Is  a false prediction of  presence in  close proximity  to  a true
(observed) presence better than a false presence far away from an observed presence
(Fielding  et  al.  2002)?  This  might  be  the  case,  especially  when  sampling  at  nearby
locations leads to sample values that are not statistically independent from each other. This
phenomenon of statistical dependence caused by spatial proximity should be considered
as relevant. For sampling on raster maps, in particular, the assignment of values to cells is
arbitrary to the extent that the specification of cell size and grid orientation is arbitrary as
well. Using a refined weighting pattern in a 4x4 contingency table, the above-mentioned
measures were modified and improved to spatially corrected versions, which are sensitive
to the spatial  arrangement of predictions (Carl  and Kühn 2017). This approach is even
recommended when using methods to account for spatial autocorrelation in the residuals
(such as GEE or WRM), because it  takes account of  autocorrelation in the dependent
variable when comparing different model outputs.

In  spind,  these metrics  are  categorised according  to  whether  or  not  their  outputs  are
dependent on the chosen threshold. th.dep (threshold dependent) and th.indep (threshold
independent) are designed to work on any number of model types; all that is needed is a
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set of actual values, predictions and their associated coordinates. The hook data set is
used to see how these work.

 

data(hook) 

df <- hook[,1:2] 

coords <- hook[,3:4] 

 

# Threshold dependent metrics 

th.dep.indices <- th.dep(data=df,coord=coords,spatial=TRUE) 

# Confusion Matrix 

th.dep.indices$cm 

# Kappa statistic 

th.dep.indices$kappa 

 

# Threshold independent metrics 

th.indep.indices <-th.indep(data=df,coord=coords,spatial=TRUE,plot.ROC=TRUE) 

# AUC 

th.indep.indices$AUC 

# TSS 

th.indep.indices$TSS 

Spatial Autocorrelation

Finally, the authors would like to mention that, in many of these analyses, it is necessary to
calculate spatial  autocorrelation using Moran's  I  function (Carl  and Kühn 2007).   While
there are many versions of this analysis in other packages, this package provides improved
efficiency through the use of Fast Fourier Transforms. This is implemented in the function
acfft (AutoCorrelationFastFourierTransform). For illustration, a quick example computing a
GLM for the musdata data set and calculating spatial autocorrelation of model residuals is
provided.
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coords <- musdata[,4:5] 

mglm <- glm(musculus ~ pollution + exposure, family = "poisson", data = musdata) 

 

ac <- acfft(coord = coords, f = resid(mglm, type = "pearson"), lim1 = 0, lim2 = 1, dmax = 10)

ac 

 

Note that you can adjust the number of distance bins to examine in acfft using the dmax
argument. The default is 10. Moreover, the user can choose the limits for the first bin (
lim1,lim2). Its difference acts as an increment for all the others.

Developer Notes

First,  while  there  are  many  packages  and  functions  available  accounting  for  spatial
autocorrelation in linear modeling or  generalised linear modeling like frameworks,  this is
the only one that offers the user-optimised regression methods: spatial GEE, spatial WRM
and  scale-specific  WMRR  in  conjunction  with  extended  methods,  step-wise  model
selection and multi-model inference analysis. Advantages are its simplicity to use as well
as it computationally efficiency.

Second, to the best of the authors' knowledge, no other package or commercially available
software offers the possibility to assess the accuracy of model predictions taking spatial
dependence into account and being comparable to classical measures of model accuracy.

It is therefore believed that spind is an extremely useful tool in spatial analyses of lattice
data, whether in biology, ecology, economics, geology, climatology or any other discipline
with spatially structured data.

Web location (URIs) and repository

The  package,  together  with  documentation,  is  available  on  CRAN: https://CRAN.R-
project.org/package=spind.  The  development  version  can  be  found  on  GitHub: https://
github.com/levisc8/spind.

Usage rights

It is open-source software (published under the GPL public licence, ver. 3).
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