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Abstract

Background

Open-access biodiversity databases including mainly citizen science data make temporally
and spatially extensive species’ observation data available to a wide range of users. Such
data  have  limitations  however,  which  include:  sampling  bias  in  favour  of  recorder
distribution, lack of survey effort assessment, and lack of coverage of the distribution of all
organisms. These limitations are not always recorded, while any technical assessment or
scientific research based on such data should include an evaluation of the uncertainty of its
source data and researchers should acknowledge this information in their analysis. The
here proposed maps of ignorance are a critical and easy way to implement a tool to not
only visually explore the quality of the data, but also to filter out unreliable results.

New information

I  present  simple  algorithms  to  display  ignorance  maps  as  a  tool  to  report  the  spatial
distribution of the bias and lack of sampling effort across a study region. Ignorance scores
are  expressed  solely  based  on  raw  data  in  order  to  rely  on  the  fewest  assumptions
possible. Therefore there is no prediction or estimation involved. The rationale is based on
the assumption that it is appropriate to use species groups as a surrogate for sampling
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effort because it is likely that an entire group of species observed by similar methods will
share similar bias. Simple algorithms are then used to transform raw data into ignorance
scores scaled 0-1 that are easily comparable and scalable. Because of the need to perform
calculations  over  big  datasets, simplicity  is  crucial  for  web-based  implementations  on
infrastructures for biodiversity information.

With these algorithms, any infrastructure for biodiversity information can offer a quality
report  of  the  observations  accessed  through  them.  Users  can  specify  a  reference
taxonomic group and a time frame according to the research question. The potential of this
tool lies in the simplicity of its algorithms and in the lack of assumptions made about the
bias distribution, giving the user the freedom to tailor analyses to their specific needs.
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Biodiversity  database,  citizen-science data,  presence-only  data,  sampling  effort,  spatial
bias, species distribution model, Swedish Lifewatch

Introduction

“The greatest enemy of knowledge is not ignorance; it is the illusion of knowledge.” Daniel
J. Boorstin

The emergence of open-access databases on diverse kinds of environmental data (e.g. w
ww.worldclim.org; www.climond.org) and species occurrences data (e.g. www.gbif.org) has
led to a rapid increase in biogeographical studies developing new theories, methodologies
and applications for nature conservancy (Elith et al. 2010, Franklin 2010, Franklin 2013,
Peterson and Soberón 2012). Accurate mapping of species distributions is a fundamental
goal  of  modern biogeography, both for  basic and applied purposes. Common mapping
techniques are expert-drawn range maps, the plotting of known species occurrences in
atlas  maps,  and  geographical  estimations  derived  from  species  distribution  models.
However, all three kinds of maps are implicitly subject to uncertainty, due to the quality and
bias of raw distributional data, the process of map building, and the dynamic nature of
species distributions themselves (Rocchini et al. 2011).

For most species, raw distributional data accessible in biodiversity databases are presence
data coming from museums, herbaria, inventories, or citizen science programs, and are the
result of a vast number of observers collecting data over a large time span with no specific
sampling  design  (Suarez  and  Tsutsui  2004).  Therefore,  biodiversity  databases  have
limitations which include: (1) inadequacy of raw data to describe distribution patterns due
to sampling bias in favor of recorder, rather than species distribution (Prendergast et al.
1993), (2) lack of survey effort assessment (Hill  2012), and (3) lack of coverage of the
geographic and environmental variations that affect the distribution of organisms (Hortal et
al. 2007). Because of these limitations, the results of different mapping techniques differ
from the true distribution of the species (Hortal et al. 2007, Schulman et al. 2007). For
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example, range maps represent actual distributional patterns only at some relatively coarse
and undefined resolution,  because a species  does not  occur  at  all  locations within  its
geographic  range  (Hurlbert  and  Jetz  2007).  Conversely,  most  species  have  not  been
recorded in some of the grid cells that they actually occupy, and many grid cells have been
insufficiently  sampled,  so  atlas  maps  for  almost  all  regions  and  taxa  present  broad
geographical gaps in knowledge (Hurlbert and Jetz 2007). Finally, spatial bias in the
records  may  translate  into  a  biased  relationship  between  species  occurrence  and
environmental  variables  (Hertzog  et  al.  2014).  Presence-only  datasets  require  special
treatment and assumptions before use, because uncorrected models show a strong bias in
their predicted patterns (Hertzog et al. 2014). As a consequence, a method for quantifying
how  much  recording  effort  a  given  location  has  received  based  upon  presence-only
observation records is required.

All these issues stemming from the quality of the raw data can be ameliorated by the use
of parallel “maps of ignorance” to provide information on sampling coverage and reliability
(Hortal  et  al.  2007,  Rocchini  et  al.  2011).  Good  practice  in  science  requires  the
assessment,  statement,  and  acknowledgement  of  measurement  error:  any  technical
assessment, monitoring program, or scientific research should thus include an evaluation
of the uncertainty of its results. Therefore, publishers of open-access databases should
inform about the data quality, as researchers should acknowledge this information in their
analysis.  However,  such  quality  control  is  rarely  available  to  users  of  biodiversity
databases (Hortal 2008).

I present simple algorithms to create and display ignorance maps based upon presence-
only  observation  records.  The  algorithms  are  thought  to  be  general  enough  to  be
implemented  as  web-based  tools  to  download  ignorance  scores  in  the  form of  raster
images. Ignorance maps will serve to properly inform users of the bias inherent to the data
and to provide them with tools to properly analyse the raw data provided. The approach
presented here is in line with the need identified by Rocchini et al. (2011) and will provide
quality control tools for protocols for biodiversity analysis such as the one proposed by
Hortal et al. (2007). In this article I describe the algorithms and considerations needed to
produce these ignorance maps, as well as examples of their potential uses, so that they
could  be  implemented  either  by  biodiversity  databases  or  directly  by  researchers.
Particularly, these algorithms are currently being implemented by The Swedish LifeWatch
(SLW, www.svenskalifewatch.se), a national e-infrastructure for integration and analysis of
biodiversity  data  (Gärdenfors  et  al.  2014)  that  assembles  mainly  presence-only  non-
systematic observations. The performance of the algorithms applied to real Swedish data
can be explored using an HTML application run through R that can be downloaded from
the  project  website  (http://alejandroruete.github.io/IgnoranceMaps)  and  the  code  is
available to be adapted to other study cases.

Project description

Title: Ignorance maps of raw data accessed from species observation databases
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Study area description: Worldwide; example data from Sweden

Design description: Rationale and assumptions

The aim is to provide ignorance maps that are easily comparable and easily scalable, to
report the spatial distribution of sampling effort (or lack of it). Therefore the obvious choice
is to represent ignorance on a scale of 0 to 1 (1 being absolute ignorance and 0 being
absolute certainty or credibility in the data). There are several approaches to incorporate
sampling  effort  to  different  analysis  of  richness,  species  distributions  and  trends  in
population abundance (Hill 2012, Jeppsson et al. 2010, Ponder et al. 2001, Prendergast et
al. 1993, Schulman et al. 2007, Snäll et al. 2011). However, most of these methods require
several assumptions that constrain their generality and comparability. Conversely, the aim
of this approach is to express ignorance solely based on raw data summarized per grid cell
in  order  to  rely  on  the  fewest  assumptions  possible.  The  aim  is  not  to  include  any
covariates or correlation and to avoid prediction, estimation and interpolation methods (see
e.g. Ponder et al. 2001). These basic criteria will give the end-user more freedom to adapt
the ignorance maps to their own research question.

Observations are reported by people with varied field skills and accuracy. Because of the
intrinsic characteristics of the reports (e.g. voluntary, non-systematic), biodiversity datasets
have a considerable spatial and temporal bias. However, observers are assumed to be
fond of or specialist on one or more taxonomic groups (e.g. family, order), rather than on
individual species. Since it  is likely that an entire group of species observed by similar
methods (henceforth a reference taxonomic group) will share similar bias (Phillips et al.
2009), it is appropriate to use species’ groups as a surrogate for sampling effort (Phillips et
al. 2009, Ponder et al. 2001). Therefore, it is straightforward to assume that the lack of
reports  of  any  species  from the reference taxonomic  group (e.g.  birds)  at  a  particular
location is likely due to a lack of ornithologists on that specific location, rather than to the
total absence of birds. The inverse logic also holds true. That is, the larger the number of
observations of species from the reference taxonomic group in a grid cell, the more likely it
is that the lack of reports of a particular species reflects a true absence of that species from
the grid cell (i.e. larger certainty).

There are some considerations to take into account before describing the algorithms. First,
the reference target group should only include species that are assumed to be sampled
with the same methodology, to keep the sampling bias consistent (Ponder et al. 2001). For
example,  reference  taxonomic  groups  should  not  include  all  species  in  the  Order
Lepidoptera because butterflies sensu stricto (superfamily Papilionoidea) are sampled in
very  different  ways than all  other  species of  Lepidoptera (mainly  moths).  Alternatively,
interacting species could be included for specialist and symbiont species. Second, it has
been pointed out that in case that ignorance maps are to be used to correct the sampling
bias  of  background  information  (for  software  packages  like  MaxEnt;  http://
www.cs.princeton.edu/~schapire/maxent/), the target species should be removed from the
reference taxonomic group if it is known that the species has been heavily sampled at a
particular location but has few records in the vicinity (Ponder et al. 2001). In the case of
allopatric species, however, removing the target species will leave “holes” in the ignorance
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maps (Ponder et al. 2001). Finally, it is preferred to calculate ignorance maps including
observations over long time periods to reduce temporal variability in sampling effort (Snäll
et al. 2011). Of course, this is only valid as long as there is no significant change to the
underlying habitat that holds the species, and time itself is not a covariate to be included in
the analysis of the data.

Algorithms overview

The sampling behaviour that characterizes observers differs among reference taxonomic
groups. For some groups like vascular plants or bryophytes observers typically inventory
confined areas (sites) reporting every species they observe, aiming to cover as many sites
as possible. In these cases, raw observation counts per grid cell i (N ) better represent the
sampling intensity and species discovery (Fig. 1a). For other groups like birds, observers
aim to complete a species list and often have preferred observation sites. Also, common
species within these groups are often not reported by voluntary citizen scientists (Snäll et

al.  2011).  In  these  cases,  a  species  observation  index   is

preferred,  where  R  is  the  number  of  species  observed  in  grid  cell  i. The  species
observation index O  offsets the sampling effort relative to the number of species reported
per  grid  cell.  The  relationship  between  the  number  of  observations  and  the  species
observation index is shown in Fig. 1b for different reference taxonomic groups including
mammals (land mammals without bats), birds, butterflies (superfamily Papilionoidea) and
vascular plants (Tracheophyta). The use of N  or O  is optional to the researcher, and its
consequences can be further explored using the HTML application run through R that can
be downloaded from the projects webpage (http://alejandroruete.github.io/IgnoranceMaps).
For  simplicity,  in  this  article  “number  of  observations”  will  also  refer  to  the  species
observation index.

The first and easiest way to transform observation counts into a 0-1 scale of ignorance (I)
is by using normalized data (henceforth the Normalization approach): 
where N  is the maximum number of observations per grid cell of the dataset. Then 0
represents the maximum certainty of the data corresponding to the maximum number of
observations recorded in the entire dataset (Fig. 2) and 1 represents absolute ignorance.
The normalization algorithm is recommended when the maximum number of observations
is not too different from the mean number of observations, and particularly for areas with
low variability. However, it is not recommended when the probability distribution of number
of observations per grid cells presents a long right tail (i.e. many grid cells with none or few
observations and few cells with extremely high number of observations).
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In many cases there are sites that are more than sufficiently sampled (i.e. long right tails in
the probability distribution of observations) but the relative influence of these sites on our
certainty may not be linear. In these cases, when it is relevant to separate sites with “few”
observations  from  sites  with  “enough”  observations,  logarithmic  transformations  are
preferred (Fig. 2). Then, ignorance is equal to one minus the normalization of the natural
logarithm  of  the  data  (henceforth  the  Log-Normalization  approach)

. A unit is added before log-transforming the data
so that grid cells without observations are transformed to the highest ignorance score, i.e.

a

 

b

Figure 1. 

a) Species discovery plot (N  vs R ) and b) species observation index (O ) as a function of the
number of observations per grid cell  (N ;  Suppl.  materials 1, 2).  Each dot shows the data
summarized per grid cell over 2000-2014 in Sweden. The dotted line indicates the 1:1 ratio of
the number of observations versus the number of observed species (a), which is equal to a
species observation index of 1 (b). Note the break in the x-axis and the change of scale of the
secondary y-axis in b).
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1. In both algorithms presented so far the minimum ignorance score, i.e. 0, is relative to the
maximum number of observations for the reference taxonomic group. Therefore, ignorance
maps produced with  these  algorithms are  highly  sensitive  to  the  spatial  and  temporal
extent of the data because the absolute maximum may not be included in subsets of the
dataset.

An  alternative  approach  is  an  algorithm  independent  of  the  maximum  number  of
observations. It estimates ignorance scores making data relative to a reference number of
observations  that  is  considered  to  be  enough  to  reduce  the  ignorance  score  by  half
(henceforth the Half-ignorance approach). In this case, ignorance scores are defined as

 (Fig.  2).  In  other  words,  setting  the  reference number  O  =  1
means that one observation is enough to consider that the absence of reports of a target
species from any grid cell is 50% due to true absence from the site and 50% due to failure
to  detect  the  species.  Setting  O  <  1  denotes  more  confidence  on  every  single
observation, not gaining much information from a higher number of observations. In this
case, setting O  = 0.5 assumes that the first single observation (of any species in the
reference taxonomic group) reduces our ignorance to 0.333. Conversely, setting O  > 1
denotes the need for more than one observation per grid cell to rely on such information
(i.e. to significantly reduce the ignorance score). For example, setting O  = 5 assumes
that we need at least five observations to partially trust on the sampling effort spent in any
particular grid cell. This algorithm allows the researcher to customize its credibility on each
observation  in  a  way  that  the  ignorance  score  approaches  asymptotically  to  0  as  the
number  of  observation  increases.  However,  the  bigger  the  O  the  slower  ignorance
scores will approach 0 (Fig. 2). This approach is specially recommended when i) there are
particular assumption about the confidence on each observation, and ii) when the aim is to
compare datasets with very different maximum number of observaitons. As an illustration
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Figure 2. 

Ignorance scores as a function of the number of observations per grid cell. The curves for the
half-ignorance algorithm (red lines) are calculated for three values of O  = 1, 5, and 10 (i.e.
enough number of observations to reduce the ignorance score by half).
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raw observational data for the superfamily Papilionoidea (Fig. 3a) is compared to
ignorance maps produced with the three different algorithms: Normalization (Fig. 3b), Log-
Normalization (Fig. 3c) and Half-Ignorance algorithms, setting O = 1, 5, and 10 (Fig. 3d,
e, f respectively). For more examples on different reference taxonomic groups download
and  run  the  interactive  examples  available  in  http://alejandroruete.github.io/
IgnoranceMaps.

It is important to highlight that the size of the grid cells (i.e. resolution) will affect the results
of all implemented algorithms. For example, consider the simple case where one large grid
cell is made up of four smaller cells of which three cells are empty and only one cell scores
all the reported observations. In this case the spatial distribution of recording effort will look
very different when mapped at a high or low resolution. Sensitivity to spatial resolution is a
common problem on studies summarizing biodiversity data on arbitrary grid cells, and the
relevance of this problem has to be evaluated for each study in light of the question or
hypothesis tested (Hurlbert and Jetz 2007). The algorithms allow the user to specify the
temporal and spatial extent and resolution in order to produce ignorance maps that are
relevant to the species biology and researchers needs (note: to do so with the R scripts
provided on the project website, the user has to simply replace the raster images with the
number of observations and the number of species with the desired ones). Some solutions
have been developed to produce scale and resolution independent maps of the sampling
effort  (i.e.  the  opposite  of  ignorance;  Schulman  et  al.  2007).  However,  because  the
algorithms  suggested  by  Schulman  et  al.  2007  are  based  on  Thiessen  polygons  and
interpolations computed for individual observation points (i.e. instead of summaries per grid
cells)  these solutions are  not  flexible  enough and are  too computationally  intensive to
provide custom web-based results over large datasets.

Funding: This project was framed within and funded by the Swedish LifeWatch.

Web location (URIs)

Homepage:  www.swedishlifewatch.se 

Download page:  http://alejandroruete.github.io/IgnoranceMaps 

Technical specification

Platform: ANY

Programming language: ANY. Examples provided as an HTML application programmed in
R.

Operational system: ANY

Interface language: English

0.5 
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a b

c d

e f

Figure 3. 

Raw observations (a; Suppl. material 1) and ignorance maps (b,c,d,e,f) for the superfamily
Papilionoidea  over  Sweden  for  the  period  2000-2014,  produced  with  the  three  proposed
algorithms. The inset in panel 3a. shows Sweden in Europe. The black contour shows a 10 km
buffer around Sweden’s land surface. Grid resolution is 10 x 10 km. Panels 3d,e,f: O  = 1, 5,
and 10; respectively.
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Repository

Type: Git

Location:  https://github.com/AlejandroRuete/IgnoranceMaps 

Usage rights

Use license: Other

IP rights notes: GNU GPL 3.0

DOI: 10.5281/zenodo.17593

Implementation

Implements specification

The code provided in the repository is implemented as an HTML application with a local R
server through the package shiny. The core algorithms introduced here are not dependent
on any language and can be used independently or be implemented on biodiversity data
portals. For example, the Swedish Lifewatch analysis portal is currently implementing this
algorithms in the JAVA language.

The R code provided is adapted to run under the shiny server framework, however those
who need can find the core algorithms in plain R language in the file "SLWApp/server.r"
provided in the repository.  This R code and examples will  remain in the repository for
individual implementations and modifications.

In order to use the R code as is with other species the requirements are:

1. a  raster  image where  each pixel  summarizes  the  total  number  of  observations
recorded for the reference taxonomic group during the desired time frame

2. a raster image where each pixel summarizes the total number of individual species
within the reference taxonomic group observed during the desired time frame

3. a raster image where each pixel summarizes the total number of observations
recorded for the focal species during the desired time frame

4. (Optional) a shape file (.shp) with the contour of the study region

Note  that  all  raster  images  must  have  the  exact  same  extent  and  resolution.  In  the
examples presented here these raster images were created transforming the grid-based
summary tables obtained from the Swedish LifeWatch analysis portal into. tiff
georeferenced images. Some portals (e.g. GBIF) will only be able to download individual
observation data points, in which case the user will need to summarize the data into raster
images.
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Note as well that although this code is implemented to calculate ignorance scores per
pixel, the algorithms can be applied to summaries of irregular areas.

Audience

Database  users  can  assess,  with  three  alternative  algorithms,  the  spatial  bias  of  the
sampling  effort  and relative  amount  of  knowledge gained for  any  reference taxonomic
group, and download these mapped ignorance data as GIS-layers. End-users will be able
to individually set the scale, resolution, time frame, and reference taxonomic groups of
interest to assess the utility of the observations reported in the database. Potential target
users  of  the  ignorance  maps  are:  1)  consultants  performing  environmental  impact
assessments  (e.g.  they  could  use  ignorance  maps  to  make  precautionary  statements
about lack of knowledge about species of special conservation interest on areas where
projects  are intended to  be developed);  2)  observers (e.g.  they might  be interested in
locating under-sampled areas to be targeted on their next campaign); and 3) researchers
(they might benefit in many different ways, some of which we describe below).

The most obvious use for ignorance maps is to mask out from other raster layers derived
from the raw data (e.g. estimates of pseudo-absence or population abundance) areas of
high uncertainty, excluding them from further analyses. A user-defined ignorance threshold
could be used to generate pseudo-absences on sites where focal species are likely to be
absent  given  the  species  has  not  been  observed  and  that  the  site  counts  with  high
sampling effort for the reference taxonomic group (Hertzog et al. 2014). Conversely, high
ignorance  scores  can  identify  under-sampled  areas  where  the  absence  of  species
observations are less likely to be due to true species absences. In this way, multiplying the
opposite of the ignorance map (1− ignorance = certainty) by any other map of occurrence
or  abundance  estimates  for  focal  species  will  weight  these  later  estimates  to  the
knowledge available (see examples of pseudo-absences estimates multiplied by ignorance
maps  in  the  interactive  application  available  in  http://alejandroruete.github.io/
IgnoranceMaps). Even more, ignorance layers can correct the bias present in comparisons
of species composition (Barnes et al.  2014), allowing for more accurate assessment of
species richness.

Ignorance  maps  are  of  particular  interest  for  species  distribution  modelling  (SDM),  as
estimates can be improved by incorporating information on how recording effort  varies
spatially (Stolar and Nielsen 2015). Major improvements in the goodness of fit of machine
learning  species  distribution  models  (e.g.  MaxEnt)  can  be  achieved  by  directly
incorporating  ignorance  maps  as  confidence  or  bias  layers  for  background  sampling
(Phillips et al. 2009, Syfert et al. 2013). Presence only data from non-systematic sampling
effort may be biased by geographical variables, such as altitude or road density, that may
also be correlated to each other. Therefore, it may be more informative to use a spatial
bias layer such as an ignorance map, and incorporate this layer into the model as an
explanatory variable than trying to identify which geographical variable is explaining the
bias.  In  this  way the model  is  explicitly  accounting for  uncertainty,  which can improve
model predictions (Stolar and Nielsen 2015).
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Within the Bayesian framework SDMs could also benefit by using ignorance scores to
inform a priori probability distributions (Argáez et al. 2005, McCarthy and Masters 2005).
For example, a priori probabilities of occurrence of a species for unobserved sites could be
generated  assuming  that  occurrences  follow  a  Bernoulli  distribution  with

. Then, for each estimation iteration, an unobserved site with
high ignorance, i.e. I  = 1, could take the value 0 or 1 with the same probability; while an
unobserved site with low ignorance score will most likely take the value 0. Then, maps
produced from such SDMs can indicate which areas of the study region are most affected
by under-sampling and therefore have the greatest predictive uncertainty.

Additional information

Conclusion

Dealing with  uncertainty  in  presence-only  citizen science data is  necessary for  a  wide
range of applications, and the development of an ignorance score as implemented here
provides an appropriate scale to compare different taxa, and a straight forward and easily
interpretable method of doing so. Any infrastructure for biodiversity information on virtually
any web infrastructure can offer a quality report of the spatial bias of observations stored in
databases implementing these simple algorithms.  Quantifying recording effort  in  citizen
science  biodiversity  datasets  allows  users  to  incorporate  uncertainty  into  analyses  of
species’ richness and distributions, to identify unreliable analyses results, and to identify
areas where further surveys are required. Users can specify a reference taxonomic group
and a time frame according to the research question. The potential of this tool lies in the
simplicity of its algorithms and the lack of assumptions made about the bias distribution,
giving the user the freedom to tailor analyses to their specific needs.
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Supplementary materials

Suppl. material 1: Number of observations and number of species per grid cell (.CSV)

Authors: Swedish LifeWatch / Swedish Species Infromation Centre
Data type: Summary of occurrences and richness per grid cell (.CSV)
Brief description: The algorithms are designed to handle number of observations and number of
species  summarized  per  grid  cells.  Here  I  provide  the.  CSV  files  as  downloaded  from
www.analysisportal.se.  This  is  the  format  one is  expected  to  get  the  summarized  data  for  a
biodiversity database. I also include data on the occurrence of two species (a common and a rare)
for each reference taxonomic group.
Filename: CSV data.zip - Download file (3.15 MB) 

Suppl. material 2: Number of observations and number of species per grid cell (.TIFF)

Authors: Swedish LifeWatch / Swedish Species Information Centre
Data type: Summary of occurrences and richness per grid cell (.TIFF)
Brief description: The algorithms are designed to handle number of observations and number of
species  summarized  per  grid  cells.  Here  I  provide  the  raster  images  used  for  the  examples
provided in the R script available on the GitHUB repository. These images were produced from.
CSV files downloaded from www.analysisportal.se
Amp=Amphibians;  MamLnB=Land  Mammals;  Bir=Birds;  Odo=Odonata;  Opi=Opilionidae;
Pae=Papilionoidea; Vas=Vascular Plants
Filename: TIFF data.zip - Download file (340.71 kb) 
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http://pwt.pensoft.net//getfile.php?filename=oo_43444.zip
http://pwt.pensoft.net//getfile.php?filename=oo_43439.zip
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