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Abstract

As herbarium specimens  are  increasingly  becoming  digitised  and  accessible  in  online

repositories, advanced computer vision techniques are being used to extract information

from them. The presence of certain plant organs on herbarium sheets is useful information

in various scientific contexts and automatic recognition of these organs will help mobilise

such information. In our study, we use deep learning to detect plant organs on digitised

herbarium specimens with  Faster  R-CNN. For  our  experiment,  we manually  annotated

hundreds of  herbarium scans with thousands of  bounding boxes for  six  types of  plant

organs and used them for training and evaluating the plant organ detection model. The

model worked particularly well on leaves and stems, while flowers were also present in

large numbers in the sheets, but were not equally well recognised.
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Introduction

Herbarium collections have been the basis of systematic botany for centuries. More than

3000 herbaria are active on a global level, comprising ca. 400 million specimens, a number

that has doubled since the early 1970s and is growing steadily (Thiers 2020). Accessibility

of these collections has been improved by international science infrastructure aggregating

specimen data and increasingly also digital images of the specimens. Plant specimens,

being usually flat and of a standard format approximating A3 size, are easier to digitise

than  most  other  biological  collection  objects.  The  Global  Plants  Initiative  (Smith  and

Figueiredo 2014) has been very successful in digitising type specimens around the world.

Single collections, such as the National Museum of Natural History in Paris, have digitised

their  collections  completely  (Le  Bras  et  al.  2017)  and  large scale  national  or  regional

digitisation initiatives are already taking place or are planned for the near future (Borsch et

al. 2020). Presently, there are more than 27 million plant specimen records with images

available via the GBIF platform (www.gbif.org), the vast majority of these images being

herbarium scans.

This  rising  number  of  digitised  herbarium  sheets  provides  an  opportunity  to  employ

computer-based image processing techniques,  such as deep learning,  to  automatically

identify species and higher taxa (Carranza-Rojas et al. 2017, Younis et al. 2018, Carranza-

Rojas et  al.  2018) or  to extract  other useful  information from the images,  such as the

presence of  pathogens (as  done for  live  plant  photos  by  Mohanty  et  al.  2016).  Deep

learning is a subset of machine learning methods for learning data representation. Deep

learning  techniques  require  huge  amounts  of  training  data  to  learn  the  features  and

representation of those data for the specified task by fine tuning parameters of hundreds or

thousands of neural  networks, arranged in multiple layers.  Learning the value of  these

parameters can take vast computer and time resources, especially on huge datasets.

The most common type of deep learning network architecture being used for extracting

image features is  the Convolutional  Neural  Network (CNN) (LeCun and Bengio 1995).

A convolutional neural  network extracts the features of  an image by passing through a

series of convolutional, non-linear, pooling (image downsampling) layers and passes them

to a fully connected layer to obtain the desired output. Each convolutional layer extracts the

visual features of the image by applying convolution operations to the image with kernels,

using a local receptive field, to produce feature maps and passing it as input to the next

layer. The initial layers in the network compute primitive features on the image, such as

corners  and  edges,  the  deeper  layers  use  these  features  to  compute  more  complex

features consisting of  curves and basic shapes and the deepest layers combine these

shapes and curves to create recognisable shapes of the concepts in the image (Yosinski et

al. 2014, Zeiler and Fergus 2014).

In this paper, we use deep learning for detecting plant organs on herbarium scans. The

plant organs are detected using an object detection network, which works by localising

each object with a bounding box on the image and classifying it. There are many types of

networks, based on CNN, used for this application. In this study, a network called Faster
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R-CNN (Ren et al. 2015) was used, which is part of the R-CNN family for object detection.

Region-based Convolutional Networks (R-CNN) identify objects and their locations in an

image. Faster R-CNN networks have shown state-of-the-art performances in various object

detection applications and competitions (Zhao et al. 2019). Therefore, many researchers

have explored the use of CNN and particularly Faster R-CNN for detecting various plant

organs, such as flowers, fruits and seedlings (Sa et al. 2016, Stein et al. 2016, Häni et al.

2020, Mai et al. 2018, Sun et al. 2018, Bargoti and Underwood 2017, Jiang et al. 2019, Ott

et al. 2020, Weaver et al. 2020). To our knowledge, this is the first time object detection

has  been used to  detect  both  vegetative  and reproductive  plant  organs  on  herbarium

scans. Identifying and localising plant organs on herbarium sheets is a first necessary step

for  some interesting  applications.  The  presence  and  state  of  organs,  such  as  leaves,

flowers and fruits, can be used in phenological studies over long time periods and may give

us more insight  into  climate change effects  since the time of  the Industrial  Revolution

(Willis et al. 2017, Lang et al. 2019).

Methods

Network architecture

A  typical  object  detection  network  consists  of  object  localisation  and  classification

integrated into one convolutional network. There are two main types of meta-architectures

available for this application: single stage detectors like Single Shot Multibox Detectors

(SSD) (Liu et al. 2016) and 'You only look once' (YOLO) (Redmon et al. 2016) and two-

stage, region-based CNN detectors, such as Faster R-CNN. Single stage detectors use a

single feed-forward network to predict object class probabilities along with bounding box

coordinates on the image. Faster R-CNN is composed of three modules: 1) a deep CNN

image feature extraction network, 2) a Region Proposal Network (RPN), used for detection

of a predefined number of Regions of Interests (RoIs) where the object(s) of interest could

reside  within  the  image,  followed  by  3)  Fast  R-CNN  (Girshick  2015),  computes  a

classification score along with class-specific bounding box regression for each of these

regions. The main reason for choosing Faster R-CNN for organ detection is because it is

generally  more  accurate,  particularly  for  large  and  small  objects,  than  single  stage

detectors like SSD when speed and memory consumption are not as important as overall

accuracy (Huang et al. 2017).

The  CNN  feature  extraction  network  used  in  this  paper  is  based  on  the  ResNet-50

architecture (He et al. 2016), without the final fully-connected layer. The Region Proposal

Network (RPN) creates thousands of  prior  or  anchor boxes to estimate the location of

objects in the image. The anchor boxes are predefined bounding boxes of certain height

and width tiled across the image, determined by their scale and aspect ratios, in order to

capture different sizes of objects of specific classes. The RPN generates these proposals

by  adjusting  these  anchors  with  coordinate  offsets  of  the  object  bounding  boxes  and

predicts the possibility of each anchor being a foreground object or a background. These

proposals are sorted according to their score and top N proposals are selected by Non-

Maximum Suppression (NMS), which are then passed to Fast R-CNN stage. NMS reduces
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the high number of proposals for the next stage by short-listing the proposals with the

highest score having minimum overlap with each other by removing the proposals with

overlap above a predefined threshold for each category. In the next stage, the proposals

with feature maps of different shapes are pooled with a ROI pooling layer, which performs

max-pooling on the inputs of non-uniform sizes to obtain a fixed number of uniform size

feature maps. These feature maps are propagated through fully-connected layers, which

end  in  two  siblings  fully-connected  layers  for  object  classification  and  bounding  box

regression, respectively. An illustration of Faster R-CNN is shown in Fig. 1.

Image Annotation

The herbarium scans annotated for training the object detection network were selected

from the MNHN (Muséum national d’Histoire naturelle) vascular plant herbarium collection

dataset in Paris (Le Bras et al. 2017), from open access images contributed to the GBIF

portal (MNHN and Chagnoux 2020). A total of 653 images were downloaded and rescaled

from their original average size of ca. 5100 by 3500 pixels to 1200 by 800 pixels, in order

to preserve the aspect ratio of the scans and to speed up the learning by reducing the

number of pixels. The images were selected manually from a large collection of scans,

having minimum visual overlap between organs, while covering a broad range of taxa and

morphology (Fig. 2, Suppl. material 2). All these images were annotated for six different

types of organs (Suppl. material  1) using LabelImg (Tzutalin 2015), a Python graphical

toolkit  for image annotation using bounding boxes. The average rate for manual image

annotation was 8 to 15 herbarium sheets per hour, depending on the difficulty and number

 
Figure 1.  

An illustration of the Faster R-CNN architecture, with ResNet for image feature extraction,

RPN for generating object proposals and RoI Pooling for creating fixed-size feature maps for

each proposal.
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of bounding boxes to be annotated. The total number of annotated bounding boxes for all

653 images was 19654, with an average of 30.1 bounding boxes per image. From these

653 annotated images, 155 of them were either annotated or verified by an expert, making

a validated subset hence used for testing and the 498 were used for training, as shown in

Fig. 3 and Fig. 4 and in more detail in Table 1.

Category Training subset

(498 images)

Test subset

(155 images)

Complete dataset

(653 images)

Leaf 7886 2051 9937

Flower 3179 763 3942

Fruit 1047 296 1343

Seed 4 6 10

Stem 3323 961 4284

Root 78 60 138

Total 15517 4137 19654

 

Table 1. 

The number of annotated bounding boxes for each plant organ in training and test subset.

Figure 2.  

Number of taxa of different rank for the three datasets with overlaps at family, genus and

species level. P(Tr), P(Te): MNHN Paris Herbarium training and test datasets, FR: Herbarium

Senckenbergianum dataset.
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Figure 3.  

A column chart showing the number of annotated bounding boxes for each organ. Red: Test

subset, Blue: Training subset.

 

Figure 4.  

Families of labelled specimens (ordered by number of specimens) with number of labelled

plant organs. The share of the plant organs differs between families, which may be due to

factors depending on the plant itself  and collecting habits (season, selection of identifiable

specimens).
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Preparing our data was not always straight-forward. The manual localisation and labelling

of plant organs from specimens encountered the following difficulties: buds, flowers and

fruits are different stages emerging in the life cycle of plant reproductive organs and, in

some cases, it was therefore difficult to find a clear distinction between these structures. In

some taxa, different plant organs were impossible to separate as these were small and

crowded, for example, in dense inflorescences with bracts and flowers or stems densely

covered by leaves. In a few cases, it was also hard to differentiate from the digital image

between roots and stolons or other stem structures. In all of these cases, we placed our

labelled boxes in a way to best characterise the respective plant organ. Sometimes, this

involved including parts of other organs and, at other times, if sufficient clearly assignable

material were available, difficult parts were left out.

Implementation

The  object  recognition  task  was  performed  using  Faster  R-CNN,  as  described  in  the

network architecture, with the Feature Pyramid Network (Lin et al. 2017) backbone. The

Feature  Pyramid  Network  increases  the  accuracy  of  the  object  detection  task  by

generating multi-scale feature maps from a single scale feature map of ResNet output, by

making top-down pathways in addition to the usual bottom-up pathways used by a regular

convolutional network for feature extraction, where each layer of the network represents

one pyramid level.  The bottom–up pathway increases the semantic value of the image

features, from corners and edges in the initial layers to detecting high level structures and

shapes of objects in the image in the final layers, while reducing its resolution at each

layer.  The top-down pathway then reconstructs  higher  resolution  layers  from the most

semantically rich layer, with predictions made independently at all levels as shown in Fig.

5.  This approach provides Faster  R-CNN with feature maps at  different  resolutions for

detecting objects of multiple scales.

 
Figure 5.  

An illustration of Feature Pyramid Network, where feature maps are indicated by blue outlines

and thicker outlines denote semantically stronger features (Lin et al. 2017).
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In order to reduce the training time and, more importantly, because of the small size of the

training dataset, transfer learning (Yosinski et al. 2014) was implemented to initialise the

model weights pre-trained on the ImageNet dataset (Deng et al. 2009). Since the initial

layers of a CNN usually learn very generic features that can also be used in new contexts,

pre-trained  weights  can  initialise  the  weights  for  these  layers.  For  the  deeper  layers,

transfer learning is used to initialise the parameter weights pre-trained on the ImageNet

dataset and then fine-tuned during training, using the annotated herbarium scan dataset

until convergence.

The  model  was  implemented  with  the  Detectron2  (Wu et  al.  2019)  library  in  PyTorch

framework and trained using Stochastic Gradient Descent optimiser with a learning rate of

0.0025 and momentum of 0.9. The anchor generator in the Region Proposal Network (see

section above on network architecture) had six anchor scales [32, 64, 128, 256, 512, 1024]

(square root of area in absolute pixels) each with three aspect ratios of [1:2, 1:1, 2:1]. The

thresholds for non-maximum suppression (NMS) were 0.6 for training and 0.25 for testing,

respectively.

Due to the large image size and additional parameters of Faster R-CNN, a minibatch size

of four images per GPU (TITAN Xp) was selected for training the model. The model was

trained  twice,  once  with  a  training  subset  of  498  images  on  a  single  GPU  for  9000

iterations and performance evaluated on the test subset of 155 images, also on a single

GPU and  then  trained  again  on  all  653  annotated  images  on  three  GPUs  for  18000

iterations  for  predicting  plant  organs  on  another  un-annotated  independent  dataset  to

evaluate our method.  This dataset  consists of  708 full  scale herbarium scans,  with an

average size of  ca.  9600 by 6500 pixels,  from the Herbarium Senckenbergianum (FR)

(Otte et al. 2011) with a different set of species (Fig. 2) and geographical origins, which is

also available at GBIF (Senckenberg 2020). The Python code and the trained model have

been made available at GitHub (Younis 2020).

Results

The predictions of the organ detection model provides a list of bounding boxes for each

organ, along with the confidence levels and their  class labels.  The performance of the

model  was  evaluated  using  the  COCO  evaluation  metric  (Lin  et  al.  2014),  which

determines whether the predicted organs and their  locations are correct.  The minimum

threshold  chosen  for  any  prediction  to  be  acceptable  is  having  a  confidence  score

(probability) of 0.5. The COCO method calculates average precision (with values from 0 to

100), which is a metric that encapsulates both precision and recall of the detection, for the

entire predictions and each class of organs at different levels of Intersection over Union

(IoU). IoU is an evaluation metric that quantifies the overlap of the predicted bounding

boxes with the ground-truth bounding boxes. The IoU score ranges from 0 to 1, the higher

the overlap, the higher the IoU score. The evaluation method considers all predictions as

positive that have IoU of at least 0.5 and the average precision at this level of IoU is called

AP50. Similarly, the average precision with a minimum IoU of 0.75 is called AP75, whereas

AP is  the average over  10 IoU levels  from 0.5  to  0.95 with  a  step size  of  0.05.  The
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precision metrics evaluated on the predicted organs on the test subset are shown in Table

2. The COCO method also calculates the AP for each category, as shown in Table 3, along

with the total bounding boxes for each category in the test subset.

AP50 AP75 AP

22.8 6.8 9.7

Category Bounding Boxes AP

Leaf 2051 26.5

Flower 763 4.7

Fruit 296 7.8

Seed 6 0.0

Stem 961 9.9

Root 60 9.4

From the predicted annotations of the model for plant organs on 708 full scale herbarium

scans  from  the  Herbarium  Senckenbergianum  dataset,  trained  on  the  653  annotated

MNHN Paris Herbarium dataset, 203 were manually verified and corrected to evaluate the

predictions. The organ detection model was successfully able to detect almost all  plant

organs in the majority of scans, as shown by the images in Fig. 6. The dataset of these 203

herbarium scans, along with the result of detections and the annotations, is available at

PANGAEA Younis et al. 2020.

The performance of the model on the verified annotated Herbarium Senckenbergianum

dataset is shown in Table 4 and Table 5. The average precision on these 203 scans is

generally higher than the MNHN Paris Herbarium test subset, there being two main reason

for this: 1) The organ detection model for full scale detection was trained on all 653 images

of  the  MNHN  Paris  Herbarium  annotated  dataset  before  detection  on  the  Herbarium

Senckenbergianum dataset, 2) The annotation of these 203 images from the Herbarium

Senckenbergianum dataset were done, based on the predictions of organs on scans as

shown in Fig. 6.

Table 2. 

The precision of the predictions on the MNHN Paris Herbarium test subset with COCO evaluation

method.

Table 3. 

Average Precision of each type of organ along with the total bounding boxes for each category in

the test subset.
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Discussion

This paper presents a method to detect multiple types of plant organs on herbarium scans.

For this research, we annotated hundreds of images with thousands of bounding boxes by

hand for each possible plant organ. A subset of these annotated scans was then used for

training of deep learning for organ detection. After training, the model was used to predict

the type and location of plant organs on the test subset. The automated detection of plant

organs in our study was most successful for leaves and stems (Table 3 and Table 5). Best

AP values for leaves are likely due to the largest set of annotated bounding boxes. Good

values for stems and roots may be explained by the relative uniformity of these organs

throughout the plant kingdom, as compared to the morphologically more diverse flowers

a b

c d

Figure 6. 

Sample  results  of  organ  detection  performed  on  unseen  full  scale  Herbarium

Senckenbergianum scans. Colour scheme for bounding boxes is; Leaf:Blue, Flower:Maroon,

Fruit:Magenta, Seed:Yellow, Stem:Green, Root:Grey.
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and fruits in between these. Seeds are rarely visible on herbarium sheets and require more

training material.

AP50 AP75 AP

32.1 16.1 16.8

Category Bounding Boxes AP

Leaf 3362 37.9

Flower 1921 18.3

Fruit 183 7.9

Seed 47 0.0

Stem 1063 25.1

Root 117 11.8

The model was trained again on all the annotated scans earlier and tested on a different

un-annotated dataset. The model performed well, based on visual inspection. In order to

evaluate the performance of the model with an average precision metric, around 200 of

these  scans  were  annotated  by  hand,  based  on  the  predicted  bounding  boxes.  The

predicted bounding boxes dramatically reduced the time to annotate these scans, since the

predictions for leaves and stems were fairly accurate. After being annotated, these scans

were compared with the predictions to evaluate the precision of the organ detection model

on this dataset.

We consider our study as a 'real-life' pioneer study with inherent biases. The training and

test  datasets  from  MNHN  Paris  Herbarium  are  from  the  same  collection,  while  the

Herbarium Senckenbergianum specimens are from an independent collection with different

geographical and taxonomic focus, but still with a number of higher taxa in common with

MNHN Paris Herbarium. The different datasets overlap mainly on the family level, partly on

genus  level  and  only  slightly  between  the  MNHN  Paris  Herbarium  training  and  test

datasets at  species level  (Fig.  2,  Suppl.  material  2).  Therefore,  we can exclude organ

recognition  being  based  upon  species-specific  features.  As  in  nature  itself  and  the

collections represented here, families are not represented equally. Likewise, the number of

labelled organs, represented in our dataset, is far from balanced and biased both by the

natural distribution of these organs in the sampled taxa and by the selection of material by

the collectors. Roots, for example, are mainly represented in Asteraceae and Orchidaceae,

Table 4. 

Result of model evaluation on the Herbarium Senckenbergianum annotated dataset.

Table 5. 

Average Precision of each type of organ along with the total bounding boxes for each category in

the Herbarium Senckenbergianum annotated dataset.
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families with many small and herbaceous species (Fig. 4, Suppl. material 3). In order to

better understand the difference in average precision of organ detection across different

taxa,  further  studies  are  necessary.  A  promising  strategy  would  be  to  employ  data

augmentation to create artificially-balanced distributions of organs and taxa (Shorten and

Khoshgoftaar  2019).  The  current  study  focuses  on  the  analysis  and  the  provision  of

annotated  datasets  of  actual  herbarium  specimens,  involving  the  aforementioned

constraints rooted in the morphology of the specimens concerned and not simulated data.

It  would also be interesting to compare a general  organ recognition with taxon-specific

approaches. Especially for fruits and flowers, we have very different shapes between taxa

and also the possible distinction between different developmental stages depends a lot on

the taxon.

Most computer vision approaches on plants focus on live plants, often in the context of

agriculture or plant breeding and, therefore, include only a limited set of taxa. The present

approach not only targets a much larger group of organisms and morphological diversity,

comparable to applications in citizen science (Wäldchen and Mäder 2019), but can also be

applied on a wider time-scale by including collection objects from hundreds of years of

botanical research. Some significant recent similar approaches to detect plant organs on

herbarium scans are GinJinn (Ott  et  al.  2020) and LeafMachine (Weaver et  al.  2020).

GinJinn uses an object-detection pipeline for automated feature extraction from herbarium

specimens. This pipeline can be used to detect any type of plant organ, which the authors

of this research demonstrated by detecting leaves on a sample dataset. LeafMachine is

another approach which tries to automate extraction of leaf traits, such as class, size and

number, from digitised herbarium specimens with machine learning.

Conclusions

Our present work focuses on the detection of plant organs from specimen images. The

presence of  flowers and fruits  on specimens is  a new source of  data for  phenological

studies (Willis et al. 2017), interesting in the context of climate change. Presence of roots

would identify plant specimens potentially containing root symbionts, such as mycorrhizal

fungi or N-fixing bacteria, for further study by microbiological or genetic methods (Heberling

and Burke 2019). Up to now, this requires visual examination of the specimens by humans;

however, an automated approach using computer vision would considerably reduce the

effort. Furthermore, the detection and localisation of specific plant organs on a herbarium

sheet  would  also  enable  or  improve  further  computer-vision  applications,  including

quantitative  approaches,  based  on  counting  these  organs,  improved  recognition  of

qualitative organ-specific traits, such as leaf shape, as well as quantitative measures, such

as leaf area or fruit size.

Localisation  of  plant  organs  will  improve  automated  recognition  and  measurements  of

organ-specific traits,  by preselecting appropriate training material  for these approaches.

The general approach of measuring traits from images instead of the specimen itself has

been shown to be precise, except for very small objects (Borges et al. 2020). Of course,
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measurements that involve further processing of plant parts, as often done in traditional

morphological studies on herbarium specimens, are not possible from images.

Automated pathogen detection on collection material will also profit from the segmentation

of plant organs from Herbarium sheet images, as many pathogens or symptoms of a plant

disease only occur on specific organs. Studies on gall midges (Veenstra 2012) have found

herbarium specimens  to  be  interesting  study  objects  and  would  potentially  profit  from

computer vision.

Manual annotation of herbarium specimens with bounding boxes, as done for the training

and  test  datasets  in  this  study,  is  a  rather  time-consuming  process.  Verification  and

correction of  automatically-annotated specimens is considerably faster,  especially  if  the

error rate is low. By iteratively incorporating expert-verified computer-generated data into

new training datasets, the results can be further improved with reasonable efforts using

Continual Learning (Parisi et al. 2019).
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