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Abstract

Diversity  patterns  of  free-living marine  nematodes  in  tropical  seagrass  beds  are

understudied.  Here,  we describe the species richness and assemblage composition of

nematodes in 13 seagrass sites covering the whole Cuban archipelago. Nematodes were

collected from Thalassia testudinum seagrass beds and identified to species level.  We

provide a checklist  of  nematode species from seagrass beds.  The species richness of

nematode assemblages is high, with 215 species, 138 genus, 35 families, seven orders

and two classes. That γ-diversity is higher than other studies and points to seagrass beds

as diversity hotspots of free-living marine nematodes. Local species richness in seagrass

bed  sites  is  about  57  ±  17  species  and  broadly  similar  across  the  sites,  despite  the

environmental heterogeneity. The geographical distance plays a weak, but significant, role

on the decay of similarity likely affected by limited dispersal of nematodes. The pairwise

similarity values, related to poor-coloniser nematodes, were twice more affected by the

distance  than  those  related  to  good-colonisers,  possibly  due  to  differential  success  of

transport and settlement.
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Introduction

Nematodes  constitute  the  fourth  most  diverse  phylum  of  metazoans  on  Earth,  after

Arthropoda, Mollusca and Platyhelminthes (Zhang 2013). The number of accepted species

of  free-living  marine  nematodes  is  about  6219  species  (Bezerra  et  al.  2020),  but  the

percentage  of  known species  is  as  low  as  12% (Appeltans  et  al.  2012).  This  gap  in

knowledge  is  even  larger  in  tropical  regions  since  there  are  many  more  studies  on

nematode  diversity  in  Europe  and  North  America  compared  with  Africa  and  Central

America, despite tropical ecosystems harbouring some of the most diverse habitats on the

Earth, such as corals reefs (Cote and Knowlton 2014) and seagrass beds (Duffy et al.

2014).

Seagrass  beds,  when  compared  with  unvegetated  adjacent  habitats,  harbour  larger

nematode species  richness  (Ruiz-Abierno and Armenteros  2017)  and different  species

composition  (Fonseca  et  al.  2011).  However,  few  studies  about  nematode  diversity  in

tropical/subtropical seagrass beds have been undertaken in comparison with intertidal and

estuarine systems. In tropical seagrass beds, nematode assemblages have been studied

by Hopper and Meyers (1967a), Hopper and Meyers (1967b), Ndaro and Olafsson (1999),

Fisher (2003), Fisher and Sheaves (2003) and Liao et al. (2015). In temperate seagrass

beds,  other  studies  on  nematode  diversity  have  described  relationships  with  food

availability in Posidonia beds (Danovaro and Gambi 2002) and the assemblage response

to a collapse of Zostera beds (Materatski et al. 2016, Materatski et al. 2018, Materatski et

al. 2015, Branco et al. 2018). Seagrass beds provide an array of advantageous conditions

to the meiofauna (and nematodes),  such as physical  protection against  re-suspension,

food availability derived from seagrass production and diverse microhabitats (Bell  et al.

1984, Decho et al. 1985). This combination of sedimentary conditions/resources provides

intermediate  levels  of  resource  availability  and  physical  disturbance  which,  in  turn,

promotes the meiofaunal richness (Armenteros et al. 2019).

The difference patterns in species composition across samples, also termed as β-diversity,

is a central theme in community ecology (Anderson et al. 2011). One pattern of β-diversity,

suitable to explore in our study, is the distance decay of similarity (DDS, Nekola and White

1999). For meiofauna, patterns of β-diversity have been explained by a combination of

niche assembly and dispersal processes (Giere 2009). Niche assembly processes have

been the subject of many studies relating the nematode assemblage structure with the

environment. Some of these studies explicitly addressed the niche breadth of nematodes

(e.g. Wu et al. 2019) and other related assemblage structure with environmental factors

looking for ecological drivers [see Heip et al. (1985) and Moens et al. (2014) for reviews].

Nematodes have the ability to effectively disperse at small scales (< 10 m) by both active

swimming and passive transport (Ullberg and Ólafsson 2003, Thomas and Lana 2011).
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Dispersal  of  marine nematodes is  substantial  at  scales of  10–100 km as indicated by

genetic data (Derycke et al. 2013). A recent review (Ptatscheck and Traunspurger 2020)

concluded that nematodes are effective colonisers due to the diversity of dispersal modes,

continuous immigration and rapid reproduction.

In  addition  to  taxonomic  diversity,  the  functional  diversity  of  assemblages  can  be

addressed  on  the  basis  of  biological  traits.  These  traits  refer  to  morphological,

physiological  or  phenological  features,  measurable  at  the  individual  level  (Violle  et  al.

2007). The most used biological traits of marine nematodes have been the trophic group

and the coloniser/persister ability (Schratzberger et al. 2007, Armenteros et al. 2009, Alves

et  al.  2014).  The trophic  classification  was proposed by  Wieser  (1953),  based on the

structure of stoma and, later, refined by Moens et al. (2004). The c-p classification was

proposed as an arbitrary scale to measure the ability to colonise/persist of nematodes,

based on food preference, gonad size, metabolic rate, mobility and occurrence of larva

dauer (Bongers 1990, Bongers et al. 1991).

In  this  study,  we  contribute  to  the  knowledge  of  the  diversity  of  free-living  marine

nematodes in seagrass beds from the Cuban archipelago, one of the hotspots of diversity

in the Caribbean Sea. Therefore, the aims of our research are:

(1) Quantify the species richness of free-living marine nematodes from seagrass beds at

the scale of a single site (α-diversity) and of the whole archipelago (γ-diversity). We provide

a checklist of species that accounts for the γ-diversity of Cuban seagrass beds; and

(2) Explore the β-diversity patterns and the effects of two potential environmental drivers:

the geographical distance (c.f. distance decay of similarity) between the studied sites and

the differential oceanic exposure of the sites (lagoon versus open shelf). In addition, the

analysis of two biological traits of nematodes (trophic group and colonising capacity) adds

another dimension to the analysis of β-diversity.

Material and methods

Study sites

We sampled 13 sites located in extensive seagrass beds (at least 1 km  of extension) in

seven areas around the Cuban archipelago (Fig. 1 and Table 1). Six sites were exposed to

the direct influence of oceanic waters (i.e. relatively close to the shelf border and no coral

reef crest separating the bed from the shelf border): GG, RG, ON, OS1, OS2 and GB3.

The other seven sites were separated from open waters by chains of cays and coral reef

crests (i.e. sheltered): SM, AM1, AM2, AM3, AM4, GB1 and GB2. We ensured the accuracy

of this classification on the basis of in situ observations of the sediment type (e.g. silty or

sandy), bottom slope and biota that may indicate physical disturbance (e.g. gorgonians,

sponges).  The  seagrass  beds  were composed  mainly  of  turtle  grass  (Thalassia 

testudinum) in soft bottoms with depth range from 1 to 5 m.
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Site Geographical area Sampling

date

Latitude (N) /

Longitude (W)

Depth

(m)

Salinity

(PSU)

DO

(mg

l )

TOM

(%)

Silt +

clay

(%)

Oceanic

regime

influence

GG Gulf of

Guanahacabibes

June 2014 22°00.582N,

84°48.783W

5 35 7.9 5 6 exposed

RG Rincón de

Guanabo

July 2015 23°10.621N,

82°05.951W

2 - - - - exposed

SM Cayo Santa María December

2018

22°39.358N,

79°04.224W

1 - - - - sheltered

ON Oriente Norte November

2014

21°12.329N,

76°14.201W

1 - - - - exposed

OS1 Oriente Sur November

2014

19°57.909N,

76°19.478W

1 - - - - exposed

OS2 Oriente Sur November

2014

19°54.573N,

77°12.045W

1 - - - - exposed

AM1 Gulf of Ana María October

2013

20°48.861N,

78°52.983W

3 37 8.6 19 32 sheltered

AM2 Gulf of Ana María October

2013

20°50.675N,

78°54.755W

3 36 7.8 20 87 sheltered

AM3 Gulf of Ana María October

2013

21°05.299N,

78°43.592W

2 37 6.5 24 61 sheltered

AM4 Gulf of Ana María October

2013

21°06.349N,

78°43.211W

2 37 6.6 20 47 sheltered

GB1 Gulf of Batabanó May 2015 21°38.036N,

81°56.346W

1 37 6.1 9 55 sheltered

GB2 Gulf of Batabanó May 2015 21°55.565N,

81°58.354W

5 36 8.2 10 46 sheltered

GB3 Gulf of Batabanó February

2013

21°37.003N,

83°11.593W

2 35 7.0 7 7 exposed

Sampling

We  could  not  sample  the  whole  extension  of  the  archipelago  in  a  single  expedition;

actually, sampling events were done within an interval of five years (see dates in Table 1)

in seven expeditions with different goals. This is the reason for small variations in the field

protocol, such as the number of collected cores or the use of preserving agent. Sediment

cores (4–8 per site) of internal diameter 2.5 cm were collected by SCUBA divers in an area

of ca. 36 m  within each site and at a depth inside the sediment of 6 cm. The sediment was

preserved on board in either 95% ethanol or 10% formalin.

-1

2

Table 1. 

Location and characteristics of the 13 sampling sites in seagrass beds from Cuban archipelago. DO

= dissolved oxygen, TOM = total organic matter. Hyphens indicate no measures.
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Temperature,  salinity  and dissolved oxygen (DO) were measured in  situ (but  not  at  all

sites)  at  approximately  10  cm  from  the  bottom  using  an  oceanographic  Hydrolab

multiprobe 4a instrument. Samples of the uppermost 3-cm layer of sediments were taken

with a 250-ml propylene container for the measurement of grain size and total  organic

matter (TOM). Grain size was determined with the gravimetric method using a standard

sieve column and an analytical balance (Loring and Rantala 1992) and was expressed as

the percentages of mud (silt + clay, < 63 µm) and sand (> 63 µm). TOM was determined by

the gravimetric method, measuring the loss of weight on ignition at 450°C for eight hours

(Heiri et al. 2001).

The geographical distance between sites was calculated as the shortest distance across

the sea to allow for potential  dispersal  by currents;  i.e.  no land barriers were crossed.

Distances were calculated in the software OpenCPN 4.2.0 with nautical charts provided by

GEOCUBA Nautical Cartography Agency.

Processing of samples

In the laboratory, sediment was sieved with filtered water (32 µm) through a nested set of

sieves  of  45  and  500  µm  of  mesh  size  to  separate  the  fractions  of  meiofauna  and

macrofauna, respectively. The material  retained in the sieves was preserved in ethanol

70% (Evans and Paulay 2012) and both fractions were analysed to extract the nematodes.

The sediment containing the organisms was mixed gently with a solution of sugar and

water  (density  1.15  g  cm )  following  the  procedure  in  Armenteros  et  al.  (2008).  This

procedure  allows  the  extraction of  the  organisms  from  the  sediment  by  difference  of

density  (i.e.  sediment settles on the bottom and organisms float  on the surface of  the

supernatant).  The  procedure  was  repeated  three  times,  the supernatant  being

concentrated in a volume of ca. 25 ml and observed under a stereomicroscope Olympus

SZX7 with magnification between 15 and 115x. All the nematodes in the samples were

picked up with a sleeved needle ending in a hook and preserved; however, only a subset of

nematodes were included in this study because other individuals were diverted for DNA

analyses. We collected between 100 and 400 nematodes, the first to be observed in the

 

-3

Figure 1.  

Map of the Cuban archipelago indicating the 13 sampled sites in seagrass beds. Dot colours

indicate different areas in the Cuban shelf.

 

Diversity patterns of free-living nematode assemblages in seagrass beds ... 5

https://arpha.pensoft.net/zoomed_fig/6115719
https://arpha.pensoft.net/zoomed_fig/6115719
https://arpha.pensoft.net/zoomed_fig/6115719
https://doi.org/10.3897/BDJ.8.e58848.figure1
https://doi.org/10.3897/BDJ.8.e58848.figure1
https://doi.org/10.3897/BDJ.8.e58848.figure1


counting chambers (i.e. no size or shape bias) and preserved them in 10% formalin. This

splitting of the samples prevented a quantitative assessment of nematode abundance; so

we necessarily focused on a nematode subset and not on the whole assemblage. Selected

nematodes  were  mounted  in  permanent  glass  slides  for  microscopy,  following  the

technique in Vincx (1996).

Nematodes were identified to the lowest possible taxonomic level, following the taxonomic

literature, such as those by Platt and Warwick (1983), Platt and Warwick (1988), Warwick

et al. (1998) and Schmidt-Rhaesa (2014). In many cases, the name of some species could

not be assigned with reasonable accuracy because there were single individuals and/or

they did not match with any described species within the genus (i.e. likely a new species);

therefore, these species were referred as sp. in the text. If more than one morphospecies

were recorded within a same genus, they were named with a number (i.e. sp. 1, sp. 2). For

some complex genera with very small-sized nematodes and those, such as Desmoscolex

and Tricoma, we could not discriminate beyond doubt between species and we preferred to

group them as spp. (i.e. more than one species within the genus).

Nematodes were classified according to two different functional traits (feeding groups and

coloniser/persister  ability)  (Suppl.  material  1).  The  classification  by  Wieser  (1953)  of

nematodes in four trophic categories, based on the morphology of the buccal cavity, was

used: selective deposit feeders (1A), non-selective deposit feeders (1B), epigrowth feeders

(2A) and predators/omnivores (2B). We also used the classification of nematodes, based

on the coloniser/persister  ability  (Bongers 1990, Bongers et  al.  1991) from c-p 1 (best

colonisers) to c-p 5 (bad colonisers).

Data analyses

Accumulation curves of richness versus individuals were built in the software EstimateS

9.0 (Colwell 2013). Richness was assessed using the observed number of species and the

non-parametric Chao 2 estimator that accounts for the unseen taxa. The observed number

of species and the rarefied richness for 100 specimens were calculated for each site. The

associated 0.95 confidence intervals (CI) were calculated, based on 100 permutation in

EstimateS 9.0.  Overlapping of  CIs  was used as a relaxed indication of  non-significant

differences between sites. The association between richness and abundance across all the

sites was calculated with the Spearman rank correlation coefficient (R ).

We used the complement of the Sorensen Similarity Index as a measure of β-diversity (i.e.

100 – Sorensen) between pairs of sites. Based on the triangular matrix of similarities, we

did a numerical ordination of the sites by non-metric multidimensional scaling (NMDS) to

visualise potential patterns in β-diversity. We used the Sorensen Index, which relies on

presence/absence  data,  because  only  a  subset  of  nematodes  in  the  samples  were

analysed. Statistical significance between the oceanographic regimes (two states: exposed

versus sheltered) was undertaken using an Analysis of Similarity (ANOSIM) in the software

PRIMER 6.1.15 (Clarke and Gorley 2006).

S
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An analysis of linear regression was carried out to test the dependence of the Sorensen

pairwise similarity with the geographical distance. Here, we used the Sorensen similarity

measure (instead of dissimilarity) because previous studies have tested the distance decay

model using similarity measures. A Mantel-type test of significance, using a non-parametric

approach, was made using the routine RELATE in the software PRIMER 6.1.15 to test if

both triangular matrices were significantly related.

Data resources

The data  underpinning  the  analysis  reported  in  this  paper  are  deposited  at  GBIF,  the

Global Biodiversity Information Facility, http://ipt.pensoft.net/resource.do?r=xxxxxx

Results

Abiotic factors

Salinity and dissolved oxygen in the water column had a narrow range (35–37 PSU and

6.1–8.6 mg l , respectively), typical of marine and well-oxygenated shallow waters (Table

1). The fraction of fine sediment (grain size < 63 µm) in sediment had broad differences

between exposed (mean: 6.5%) and sheltered sites (mean: 55%). The content of organic

matter was also broadly different with exposed sites having poorer content of carbon in

sediments (mean: 6%) compared to sheltered sites (mean: 17%) (Table 1).

Species richness

We identified 2678 nematodes belonging to 215 species, 138 genera, 34 families, seven

orders and two classes. The observed species richness at local scale (α-diversity) had a

median (± interquartile range, n = 13) of 57 ± 17 species (range: 31–88 species). Species

richness did not show significant differences between most of the sites as indicated by the

broad  overlapping  of  the  confidence  intervals;  but  GB3 and  OS2 had  the  lowest  and

highest values of α-diversity, respectively (Fig. 2a). Since species richness was strongly

influenced by the number of identified specimens (Spearman correlation, R  = 0.82, p <

0.001, n = 13), we calculated the expected number of species (ES) for a sample size of

100 specimens, using rarefaction. ES  was not correlated with the abundance (R  =

0.05, p = 0.87, n = 13). The median ES  was 42 ± 6 species (range: 27–49 species).

The broad overlapping of the 0.95 confidence intervals for ES  suggests no significant

differences  in  the  species  richness  between  sites;  albeit  the  significant  differences

remained between GB3 and OS2 (Fig. 2b).

The species  richness  at  regional  scale  (γ-diversity)  of  free-living  marine  nematodes in

seagrass beds was estimated from the combination of the 13 studied sites. The curve of

accumulation of observed species richness did not approach to an asymptote (Fig. 2c) and

the total richness (± SD) was 215 ± 6 species (0.95 CI: 204–226 species). However, the

curve of Chao 2 non-parametric estimator approached to an asymptote and the estimated

-1
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species  richness  was  253  ±  13  species  (0.95  CI:  235–287  species).  The  checklist  of

species contributing to the regional inventory and their occurrence across the 13 sites is

given as supplementary material (Suppl. material 2).

 
Figure 2.  

Species richness of free-living marine nematode assemblages in seagrass beds. (a) Observed

species richness per site (α-diversity) with 0.95 confidence intervals. (b) Expected number of

species (ES) rarefied to a sample of  100 nematodes per site.  (c)  Accumulation curves of

observed species richness and the non-parametric Chao 2 estimator with all sites combined

(γ-diversity).
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The more abundant trophic groups (median ± interquartile range) were predator/omnivores

(2B, 35% ± 15%) and epigrowth feeders (2A, 34% ± 7%). The third most abundant trophic

group was non-selective deposit  feeders (1B, 19% ± 11%) and the less abundant was

selective deposit feeders (1A, 14% ± 5%). According to the coloniser/persister scale, the

nematodes with  intermediate  colonising ability  were the most  abundant  (c-p  3,  47% ±

13%), followed by nematodes with high colonising ability (c-p 2, 40% ± 13%). Nematodes

with low colonising abilities had lower abundance (c-p 4, 12% ± 4%) and nematodes, with

the lowest colonising ability, were the least abundant (c-p 5, 0.5% ± 0.9%).

Assemblage composition and β-diversity

The dominance was moderate with only 23 species (11% of total richness) accounting for

51%  of  the  total  accumulated  abundance.  The  most  abundant  species  were

Paradesmodora immersa Wieser,  1954  (4%);  Desmodora pontica Filipjev,  1922  (4%);

Viscosia abyssorum (Allgén, 1933) (3%); Dorylaimopsis punctata Ditlevsen, 1918 (3%);

Daptonema sp. (3%); Marylynnia sp. (3%), Euchromadora vulgaris Bastian, 1865 (3%);

Halichoanolaimus chordiurus Gerlach,  1955 (3%);  and Zalonema ditlevseni (Micoletzky,

1922) (3%). These species belonged to five orders and seven families widely distributed in

marine  habitats,  namely:  Chromadoridae,  Comesomatidae,  Cyatholaimidae,

Desmodoridae, Oncholaimidae, Selachinematidae and Xyalidae.

The values of pairwise dissimilarity (β-diversity) between sites ranged from 40 to 67% with

an average of 55%. The ordination of the sites, based on the presence/absence of species,

did not indicate any clustering of sites, based on the geographical area or oceanographic

regime  (i.e.  exposed  vs.  sheltered)  (Fig.  3a).  The  multivariate  assemblage  structure

between regime conditions was not significantly different (ANOSIM, R = 0.08, p = 0.25, 999

permutations).

Geographical distance may be a driver of β-diversity, namely, the model distance decay of

similarity (DDS). To explore the adjustment of DDS model of our data, we computed 78

shortest geographical distances amongst the 13 sites. The geographical distance amongst

sites  had  a  median  of  599  km (range:  5–1269  km).  The  Sorensen  pairwise  similarity

between sites was significantly, but weakly, related with the geographical distance (linear

regression, slope = -0.01 ± 0.003, p < 0.001, R  = 0.22, n = 78) (Fig. 3b). A non-parametric

approach using a Mantel Test indicated that both triangular matrices (Sorensen similarity

and geographical distance) were significantly associated (RELATE, Rho = 0.46, p = 0.004,

999 permutations).

We also explored the relationships between Sorensen similarity with geographical distance

independently for exposed and sheltered sites. Exposed sites lacked a DDS as indicated

by the non-significant relationship between Sorensen similarity and geographical distance.

However, sheltered sites had a DDS relationship with a significant relationship between

similarity and distance (Fig. 3c and Table 2).

2
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Figure 3.  

Species  composition  of  free-living  marine  nematode  assemblages  in  seagrass  beds.  (a)

Ordination  of  13  sites  in  seagrass  beds  of  the  Cuban  archipelago,  based  on  presence/

absence  of  free-living  nematode  species.  (b)  Relationships  between  pairwise  Sorensen

similarity  and  geographical  distance.  (c)  Relationships  between  Sorensen  similarity  and

geographical distance with sites separated by the oceanographic regime.
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Attribute/functional trait Category/scale R Slope n

Oceanographic regime Exposed 0.08 -0.006 15

Sheltered 0.72 -0.02* 21 

Trophic group Selective deposit feeders (1A) 0.09 -0.01* 78 

Non-selective deposit feeder (1B) 0.12 -0.01* 78 

Epigrowth feeder (2A) 0.14 -0.01* 78 

Predator/omnivore (2B) 0.12 -0.01* 78 

Coloniser/persister 2 0.08 -0.01* 78 

3 0.17 -0.01* 78 

4+5 0.19 -0.02* 78 

The  DDS  occurred  for  the  four  tested  trophic  groups:  deposit  feeders  (1A  and  1B),

epigrowth feeders (2A) and predator/omnivore (2B) (Fig. 4, left column and Table 2). The

slope of the relationship similarity-distance for these groups was statistically significant and

similar in magnitude with a decay of ca. 1% of similarity for each 100 km. The DDS was

also significant for all the categories of nematodes classified after the coloniser/persister

scale (Fig. 4, right column and Table 2). However, the slope of poor colonisers (i.e. c-p 4 &

5) was two times greater (ca. 2% change of similarity each 100 km) than good colonisers

(ca. 1% change each 100 km).

Discussion

Species richness

The γ-diversity of nematode assemblages was high as expected in seagrass beds. We

have reported higher species richness than other studies in tropical seagrass beds [e.g.

100 species in Hopper and Meyers (1967b) from four sites, 152 species in Fisher and

Sheaves (2003) from four sites]. Most of the studies of nematode diversity in seagrass

beds have used genus as the lowest taxonomic level. The diversity at genus level reported

in our study (138 genera) is higher than other reports in temperate seagrass beds [e.g. 88

genera  in  Danovaro  and  Gambi  (2002)  within  a  single  Posidonia bed,  58  genera  in

Materatski et al. (2015) from two sites]; and also higher than other estimates in tropical

seagrass beds [e.g. 100 genera in Ndaro and Olafsson (1999)from three sites, 63 genera

in Liao et al. (2015) within a single Thalassia bed]. The most plausible explanation is the

large spatial coverage of our sampling scheme that included 13 sites in seagrass beds

2

Table 2. 

Testing  the distance decay of  similarity  after  oceanographic  regime of  the sites;  and after  the

functional traits of free-living marine nematode assemblages. Parameters of the linear regression

between the Sorensen Similarity Index and the geographical distance are given. Trophic groups are

based on the structure of the buccal cavity after Weiser (1953) and coloniser/persister are based on

a scale from good (c-p = 2) to poor (c-p = 5) coloniser. Scales 4 and 5 were summed. Asterisk (and

bold) indicates that the slope is significantly different of zero.
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from all  the  sub-regions in  the  Cuban archipelago (i.e.  separated in  median 599 km).

Another factor that could promote the high species richness is the variety of oceanographic

regimes  in  the  sampling  sites,  ranging  from widely  exposed  (OS1  and  OS2)  to  well-

sheltered  (AM1  and  AM2).  The  non-asymptotic  shape  of  the  curves  of  accumulated

number of species suggests that there is still undiscovered diversity. The non-parametric

Chao 2 estimator indicates an as yet unseen diversity as high as 253 species that can be

interpreted  as  the  lower  bound  of  diversity  (Gotelli  and  Colwell  2011)  in  the  studied

seagrass beds.

 
Figure 4.  

The distance decay of similarity for pairwise similarity values (Sorensen Index) of free-living

marine nematode assemblages and shortest geographical distance between sites. Sorensen

similarities are based on matrices of functional traits. Left column: Trophic groups (selective

deposit  feeders  =  1A,  non-selective  deposit  feeders  =  1B,  epigrowth  feeders  =  2A  and

predator/omnivores = 2B). Right column: Coloniser/persister scale (c-p 2 good coloniser/poor

persister to c-p 5 bad coloniser/good persister).
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The significant differences in α-diversity between sites could be explained by differences in

the  number  of  identified  specimens  and/or  environmental  conditions  at  local  scale.

However, when we standardised to an equal level of abundance, the species richness was

the same across most of the sites. It suggests that the seagrass beds around the Cuban

archipelago  harbour  a  rather  similar  species  richness,  despite  the  environmental

heterogeneity.  This  is  consistent  with  the  lack  of  clustering  of  the  samples,  based  on

assemblage species composition, by geographical area or exposure to oceanic influence.

The recorded broad phylogenetic scope of the nine dominant nematode species in our

study  (belonging  to  five  orders  and  seven  families),  high  species  richness  and  even

occurrence of all trophic groups, reflect the combination of: (i) heterogeneous composition

of food sources (Danovaro and Gambi 2002), (ii) the provision of sheltered environment by

the seagrass blades (Leduc and Probert 2011) and (iii)  the diversity of microhabitats in

seagrass beds (Hall and Bell 1993). This combination of enhancing factors supports the

view that seagrass beds are diversity hotspots for free-living marine nematodes with higher

richness, compared to other habitats (Armenteros et al. 2019).

β-diversity

The geographical distance influenced the pairwise similarity in the studied assemblages,

albeit with weak effect. The DDS can be caused by either a decrease in environmental

similarity with distance or by limits to dispersal and niche breadth differences amongst taxa

(Nekola and White 1999). The separation between seagrass beds in our study (median

599 km) likely constitutes limits to dispersal. Distances in the order of more than 100 km

constitute limits to the dispersal of marine nematodes as evidenced from genetic (Derycke

et al. 2013) and ecological data (Pérez-García et al. 2019). However, aquatic nematodes

may disperse to long distances by the combination of diverse modes of dispersal (e.g.

passive  dispersal  by  currents,  zoochory)  with  rapid  reproduction  (Ptatscheck  and

Traunspurger 2020). The differences in the DDS pattern between exposed and sheltered

sites  suggest  that  dispersal  by  hydrodynamics  plays  a  significant  role.  Stronger

hydrodynamics in exposed sites putatively resulted in a weaker DDS when compared with

sheltered sites where weaker hydrodynamics may pose limits to the passive dispersal.

However, alternative explanations, such as the difference in the pool of organic carbon in

sediments (lower in exposed sites) and/or grain size (higher in exposed sites), cannot be

ruled out and deserve further study using abundance data.

The DDS patterns occurred in similar rates for the four trophic groups (i.e. diminution of

similarity with the increase in geographical distance). According to Danovaro and Gambi

(2002), the nematode trophic group composition in seagrass beds was mainly determined

by the quality and quantity of available food in sediments. In our study, it is unclear if DDS

patterns, based on trophic groups, were affected by the distance itself or was mirroring the

decay of similarity of species composition. Two further issues, related to the use of trophic

group  classification,  could  affect  our  results.  First,  Wieser’s  classification  does  not

characterise effectively the high feeding selectivity and flexibility of nematodes (Moens et

al.  2014). Second, swimming behaviour of the species, even within the same Wieser’s
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feeding  group,  affects  the  susceptibility  to  passive  re-suspension  as  indicated  by

experimental evidence (Thomas and Lana 2011).

The differential colonising ability of nematodes significantly affected the distance decay of

similarity. The similarity pattern of poor coloniser nematodes (c-p 4 and 5) was twice as

much affected by the geographical distance than the good colonisers (c-p 2 and 3). This

suggests  that  the  organismal  features  used  for  c-p  scale,  namely,  generation  time,

reproduction  rate  and  body  size  (Bongers  1990,  Bongers  et  al.  1991)  may  affect  the

distance  decay  patterns  of  nematodes.  Likely,  large  body-sized  nematodes  with  low

generation  times,  few  offspring  and  low  metabolic  rate  (e.g.  Cylicolaimus magnus, 

Desmoscolex spp., Enoplus sp., Leptosomatum sp. and Polygastrophora maior) were less

effectively  dispersed and/or  settled with  lower  success to  adjacent  sites.  On the other

hand,  good colonisers with small  body size,  producing many offspring and with higher

metabolic rate, show a weaker distance decay likely due to more efficient dispersal by

currents and/or successful settlement. Thus, according to Poulin (2003): “distance matters,

but it is not always the key determinant of similarity”

Concluding remarks

The regional  species richness of  free living nematode assemblages accounted for  215

species and 34 families. This γ-diversity was higher than other estimates from tropical and

temperate regions and points to seagrass beds as diversity hotspots of free-living marine

nematodes.  Local  species richness in seagrass sites was about 57 ± 17 species.  The

geographical distance played a weak, but significant, role in the decay of similarity and was

likely affected by the limited dispersal of nematodes. Pairwise similarity of bad-coloniser

nematodes was twice as much affected by distance than good-colonisers possibly due to

differential success of transport and settlement.
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