
Biodiversity Data Journal 4: e8357
doi: 10.3897/BDJ.4.e8357

Software Description

Optimized R functions for analysis of ecological

community data using the R virtual laboratory

(RvLab)

Constantinos Varsos , Theodore Patkos , Anastasis Oulas , Christina Pavloudi , Alexandros
Gougousis , Umer Zeeshan Ijaz , Irene Filiopoulou , Nikolaos Pattakos , Edward Vanden Berghe ,
Antonio Fernández-Guerra , Sarah Faulwetter , Eva Chatzinikolaou , Evangelos Pafilis , Chryssoula
Bekiari , Martin Doerr , Christos Arvanitidis

‡ Institute of Computer Science, Foundation of Research and Technology Hellas, Heraklion, Greece
§ Institute of Marine Biology, Biotechnology and Aquaculture, Hellenic Centre for Marine Research, Heraklion, Crete, Greece
| Department of Biology, University of Ghent, Ghent, Belgium, Department of Microbial Ecophysiology, University of Bremen,
Bremen, Germany
¶ University of Glasgow, Glasgow, United Kingdom
Vrije Universiteit Brussels, 1050, Brussels, Belgium
¤ University of Oxford, Oxford e-Research Centre, Oxford, United Kingdom

Corresponding author: Anastasis Oulas (oulas@hcmr.gr)

Academic editor: Vasilis Gerovasileiou

Received: 03 Mar 2016 | Accepted: 04 Jun 2016 | Published: 01 Nov 2016

Citation: Varsos C, Patkos T, Oulas A, Pavloudi C, Gougousis A, Ijaz U, Filiopoulou I, Pattakos N, Vanden
Berghe E, Fernández-Guerra A, Faulwetter S, Chatzinikolaou E, Pafilis E, Bekiari C, Doerr M, Arvanitidis C
(2016) Optimized R functions for analysis of ecological community data using the R virtual laboratory (RvLab).
Biodiversity Data Journal 4: e8357. https://doi.org/10.3897/BDJ.4.e8357

Abstract

Background

Parallel data manipulation using R has previously been addressed by members of the R
community, however most of these studies produce ad hoc solutions that are not readily
available to the average R user. Our targeted users, ranging from the expert ecologist/
microbiologists to computational biologists, often experience difficulties in finding optimal
ways to exploit the full capacity of their computational resources. In addition, improving
performance of commonly used R scripts becomes increasingly difficult especially with

‡ ‡ § §,|

§ ¶ § § #

¤ § § §

‡ ‡ §

© Varsos C et al. This is an open access article distributed under the terms of the Creative Commons Attribution License (CC BY
4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are
credited.

https://doi.org/10.3897/BDJ.4.e8357
mailto:oulas@hcmr.gr?subject=Your%20manuscript%20in%20PWT%20#4728/Biodiversity%20Data%20Journal%20#8357
https://doi.org/10.3897/BDJ.4.e8357

large datasets. Furthermore, the implementations described here can be of significant
interest to expert bioinformaticians or R developers. Therefore, our goals can be
summarized as: (i) description of a complete methodology for the analysis of large datasets
by combining capabilities of diverse R packages, (ii) presentation of their application
through a virtual R laboratory (RvLab) that makes execution of complex functions and
visualization of results easy and readily available to the end-user.

New information

In this paper, the novelty stems from implementations of parallel methodologies which rely
on the processing of data on different levels of abstraction and the availability of these
processes through an integrated portal. Parallel implementation R packages, such as the
pbdMPI (Programming with Big Data – Interface to MPI) package, are used to implement
Single Program Multiple Data (SPMD) parallelization on primitive mathematical operations,
allowing for interplay with functions of the vegan package. The dplyr and RPostgreSQL R
packages are further integrated offering connections to dataframe like objects (databases)
as secondary storage solutions whenever memory demands exceed available RAM
resources.

The RvLab is running on a PC cluster, using version 3.1.2 (2014-10-31) on a x86_64-pc-
linux-gnu (64-bit) platform, and offers an intuitive virtual environmet interface enabling
users to perform analysis of ecological and microbial communities based on optimized
vegan functions.

A beta version of the RvLab is available after registration at: https://
portal.lifewatchgreece.eu/

Keywords

Parallel data manipulation, R, pbdMPI package, Single Program Multiple Data (SPMD)
parallelization, virtual enviroment, vegan package, biodiversity analyses, ecological
analyses

Introduction

The advent of interdisciplinary science fields like computational ecology/biodiversity and
metagenomics (Oulas et al. 2015, Canhos et al. 2004, Petrovskii and Petrovskaya 2012,
Soberon and Peterson 2004) is contributing to the constant escalation of complex
computational pipelines, which, in turn, requires increased computational resources and
capacities. The size and speed of the computational analyses are limited by the source
code which delineates the accessible functions and libraries. The ever growing in
popularity and usability R statistical programming language (R Core Team 2013) provides a
wide array of built-in functions, libraries and packages that are of valuable use to the

2 Varsos C et al.

https://rvlab.portal.lifewatchgreece.eu/
https://rvlab.portal.lifewatchgreece.eu/
https://portal.lifewatchgreece.eu/
https://portal.lifewatchgreece.eu/

environmental ecologist, microbiologist as well as many other academic disciplines. The
use of these functions is often sub-optimal with respect to data size manipulation and
speed-up. However, the average biologist is often not inclined to become acquainted with
the necessary programming and information technology (IT) skills, required to efficiently
transform conventional available functions into computationally optimized methods.
Therefore, they are deprived from speed-up and improved memory manipulation during
their computational and mathematical operations.

On the other hand, computer scientists are well-aware of tools, methods and
implementations that can provide significant boosts in speed for computational calculations
and further solve issues like memory exhaustion, a problem often faced in analyses using
“big” data.

In this work, we have brought together expert scientists from the disciplines of
environmental ecology and microbiology with IT and mathematical experts in order to focus
on optimization methods for widely used statistical functions, effective in environmental
ecology today. More specifically, we focus on the vegan (Community Ecology) package
(Oksanen et al. 2015) available in R and the ways to optimise common functions with
respect to both speed-up and memory usability. This work comes together under a virtual
laboratory (vLab) which is available through the LifeWatchGreece portal.

Similar efforts, as in Buttigieg and Ramette (2014), have resulted in the creation of online
R platforms, such as the "Multivariate AnalysiS Applications for Microbial Ecology (MASA
ME)" suite; it seems that there is a need for the creation of such platforms as more and
more scientists are leaning towards the use of open source software for their analyses.
However, although MASAME makes use of R and some of the vegan functions are
available for the users, there is no extra effort on their optimization and parallelization.

Our main incentive is to make optimization tasks easily available to the average user who
has no expertise and prior training in this area of research. This way, environmental
ecologists can make use of optimized functions, implemented by IT experts and
mathematicians, through a freely available, user-friendly interface, without having to spend
time analysing parallelization complexity and deciding on which function to use and how to
do so. In addition, multiple non-parallelized functions are also available for users with no
programming experience via the RvLab interface. Source code and methodologies are
accessible to users with programming and IT knowledge.

We describe the optimization methods and their implementation in detail and highlight the
advantages of using our optimized R functions, with respect to both computational time
speed-up, as well as improved memory manipulation in order to avoid memory exhaustion
issues. The analyses we focus on can be computationally demanding primarily due to large
matrix operations, increasing permutations in likelihood function computations and iterative
basic mathematical operations.

Optimized R functions for analysis of ecological community data using the ... 3

https://portal.lifewatchgreece.eu/
http://mb3is.megx.net/eatme/
http://mb3is.megx.net/eatme/

Motivation and State-of-the-Art

Despite its popularity among the research community, R still seems inflexible in fully
exploiting the latest developments in computer software and hardware. As there are no
inherent constructs for parallelizing computations, it is up to the developer to adapt the R
code, in order to take advantage of the resources available by multi-core CPUs. Moreover,
when the data computed are too big to fit in main memory, no simple solution is considered
standard. Packages that offer workarounds are indeed available, but their use by non-
expert R users is rarely considered straightforward. These are real issues faced by
researchers, whose needs for processing collected data continually increase both in
computational demand and in size.

Working with large datasets in R can be cumbersome because of the need to keep objects
in physical memory. The need to keep whole objects in memory becomes a challenging
task to those who might want to work interactively with large datasets. Several packages
attempt to overcome problems when accessing big volumes of data. The bigmem package
(Kane et al. 2013) is designed to handle massive data sets that are not larger than the
available RAM. It overcomes the restriction of R using matrices or data frames that, even
though they fit in RAM, no space is available to handle the overhead of working with them.
Furthermore, it extends and augments the R statistical programming environment, thus
enabling more powerful parallel analyses and data mining of massive data sets, although it
is restricted to the available RAM size (even though some options for connecting its objects
with file-backed mappings can be implemented).

The Programming with Big Data in R (pbdR) project (Ostrouchov et al. 2012) seeks to
elevate the R language to supercomputers. Most of its functionalities revolve around
parallelization features, yet the pbdDMAT package (Schmidt et al. 2012) of the project
offers an implicitly parallel system for doing distributed matrix computation in R. The
bigmem and pbdDMAT packages are useful solutions, but do not always provide the level
of flexibility needed in handling complex constructs because of the fact that they rely on
their own constructs to handle big data.

Nowadays, the dplyr package (Wickham and Francois 2015) has become very popular for
data manipulation, providing a repertoire of functions for accessing data stored in
databases. Coupled with packages dedicated for specific database implementations, such
as RPostgreSQL (Conway et al. 2013), it offers the possibility to write R scripts that access
the underlying databases from within the R environment, but with the look and feel of
relational data manipulation. This approach is more attractive for a large scale
implementation, such as the one designed for the LifeWatchGreece portal.

As far as parallelization is concerned, a multitude of packages have emerged, such as
snow (Tierney et al. 2015), multicore (Urbanek 2009) and parallel. Due to the complexity of
tasks required in vegan, as well as in other packages for the LifeWatchGreece project, we
found the existing approaches for parallel computing rather restrictive. Our decision in this
project was to go into the low-level whenever necessary and implement custom parallel
solutions which can provide more flexibility. To assist us in this process, packages that

4 Varsos C et al.

https://stat.ethz.ch/R-manual/R-devel/library/parallel/doc/parallel.pdf
https://stat.ethz.ch/R-manual/R-devel/library/parallel/doc/parallel.pdf

provide interfaces to MPI (Message-Passing Interface) for R are proved really valuable.
Rmpi (Yu 2002) is one of the most popular solutions that can port low level MPI functions
into R, abstracting the complexities of writing C or Fortran code. The more recent pbdR
project (Ostrouchov et al. 2012) also offers such a wrapper through the pbdMPI library,
which is intended for Single Program Multiple Data (SPMD) programming with big data.

After considering the benefits offered, we decided to adopt pbdMPI (Chen et al. 2012, as
our primary package for parallelization within LifeWatchGreece, and couple it with other
solutions for parallelization or optimization of code, whenever necessary.

Summarizing, the work conducted in the context of the project aims at applying
optimization techniques for data on two different levels of abstraction described in detail in
the project description. This is done by:

1) Using the pbdMPI package to implement Single Program Multiple Data (SPMD)
parallelization on primitive mathematical operations, allowing for interplay with functions of
the vegan package.

2) Using the dplyr and RPostgreSQL packages in order to offer secondary storage
solutions whenever memory demands exceed available RAM resources (memory
exhaustion)

Option (1) may be employed in conjugation with option (2) to address memory exhaustion
issues. While, for speed-up and job segmentation issues we only use option (1).

We finally evaluate our optimization results using two test case scenarios with real data
obtained from environmental ecologists in the standard file formats, commonly utilized in
the field. We also demonstrate results and visualization outcomes obtained through the
graphical user interface available through the LifeWatchGreece portal.

Project description

Design description: The general architecture design to approach the development of the
LifeWatchGreece RvLab is presented in Fig. 1. At the bottom layer, a dedicated multi-core
cluster has been installed, providing the necessary resources for supporting the execution
of demanding computational tasks (jobs) submitted by RvLab users. On top of that, all jobs
are inserted into a priority queue and forwarded to the cluster within the Linux Operating
System.

Each R script communicates with the cluster using the MPI message-passing protocol.
RvLab abstracts the implementation details from the end-user: each vegan function
implemented for execution within the RvLab takes advantage of the appropriate R
packages for parallel computing and big data manipulation, which are preconfigured to
adapt to the workload of the cluster at each particular moment.

Optimized R functions for analysis of ecological community data using the ... 5

https://portal.lifewatchgreece.eu/

An intuitive User Interface provides all necessary facilities for end users to perform ordinary
tasks, such as to upload their datasets, to choose and parameterize the desirable vegan
functions available by the RvLab, to monitor the progress of execution of their submitted
jobs, and to visualize and download the produced results.

Optimization Analysis Process

The core functionalities of the RvLab lie in the middle layers of this architecture, namely in
the way the vegan functions become appropriately adapted for execution within the
LifeWatchGreece Cluster Infrastructure. We next describe first the general approach
followed for each individual vegan function, in order to determine the optimization
techniques that should be followed and then we explain in detail our generic methodology
for optimizing functions.

Optimization methods focus on three major processes: a) Parallelization, b) Data
manipulation through primary and secondary storage and c) Load balancing.

We focus on the parallelization of functions at two levels of abstraction: Level 1 (low level) -
Primitive operations like outer product, matrix multiplication, etc, available in the core R
package, are addressed at low level using basic mathematical operations, due to their
frequent usage. Level 2 (high level) - More, general R functions, like those in vegan CRAN
package are addressed at the higher level of abstraction, namely job segmentation. Both
levels can be combined to reach optimal solutions and achieve significant speed-up. Often
the output of a certain function can be utilized as the input of another functions. For such
sucessive function executions, level 2 parallelization allows for efficent data portability
between functions. (eg. taxa2dist -> taxondive).

Some issues which we needed to address for this work entailed the general nature of R as
a programing language. R is a single-threaded language, so we had to find alternative

Figure 1.

The general architecture design to approach the development of the LifeWatchGreece RvLab.

6 Varsos C et al.

http://arpha.pensoft.net//display_zoomed_figure.php?fig_id=2461855
http://arpha.pensoft.net//display_zoomed_figure.php?fig_id=2461855
http://arpha.pensoft.net//display_zoomed_figure.php?fig_id=2461855

methods to overcome memory barriers and perform big data segmentation, as well as
perform task segmentation using the multi-core system available by a cluster computing
environment.

The above issues were addressed primarily using MPI. MPI is a powerful, low-level tool
that can provide numerous solutions for R parallelization. It provides a framework for
managing communications, while the general process for utilizing MPI in SPMD (Single
Program Multiple Data) can be summarized with the following steps: i) Initialize
communicator(s), ii) Data input to individual processes, iii) Perform computations, iv)
Communicate results, v) Shut down the communicator(s).

In order to perform MPI manipulation for RvLab we adopted pbdMPI as our primary
package and couple it with other parallelization solutions or code optimization. MPI is
simplified through pbdMPI, whereby a single program is written and later spawned by
mpirun. pbdMPI allows for spawning and broadcasting from within R under a simplified API
for all functions, permitting very fast communication.

Moreover, we utilized pbdR for big memory manipulations and in conjunction with pbdMPI
we achieve low-level and custom parallel solutions and also allows us to benefit from
Single Program Multiple Data.

Performing profiling techniques

In order to profile for bottlenecks (parts of the algorithm where large amounts of runtime
are consumed and greater size of memory is allocated) we combine a variety of functions
from several profiling packages, like profr (Wickham 2014) and proftools (Tierney and
Jarjour 2016). Functions like Rprof() (for memory profiling) trace parts of the code with
greater memory allocations while proftable() and lineprof(), offer profiling of R code on a
line-by-line basis.

Optimization steps and approach

Before starting our parallelization methodology, we perform some preliminary tasks in order
to distribute efficiently our effort. The first task concerns the application of profiling
techniques so as to detect chunks of the algorithm according to memory consumption and
computational time. Thereafter, we classify these chunks from most to least demanding.
The second task requires categorization of these chunks according to their repetitions
inside the code. Functions which contain repeated parts, like often usage of primitive
functions, must be treated differently than functions with non-repeated occurances. A
choice of low (level 1) or high (level 2) level optimization is then taken depending on
whether the function contains repeated occurrences of primitive function operations or non-
repeated occurrences, where parallelization of the functions is performed.

The next checkpoint in the workflow depends on whether the size of the data generated by
the function operations exceeds the available system RAM capacity. If the data surpasses
the available RAM, we use RPostgreSQL and dplyr packages. These packages allow us to
interact with external database, like PostgreSQL, in order to overcome the memory barrier.

Optimized R functions for analysis of ecological community data using the ... 7

Thereafter, we combine the operation with the pbdMPI package to parallelize our function.
After the expiration of the above technique we generate and retrieve the desired optimized
results. In cases where available RAM is sufficient, we limit our process to pbdMPI
package usage in order to decrease computational time and to optimize our results.

Finally, we reconstruct our results in the appropriate format and we store them form further
use or we printed on the screen. The overall pipeline for the optimization process can be
seen in Fig. 2.

Example 1 Low level optimization (level 1). One characteristic example is the
parallelization of functions, such as the outer product (Suppl. material 1). The methodology
followed is shown Fig. 3, aiming at allogating smaller portions of the work on different
processors (Suppl. material 2). A similar methodology is applied on other recurrent
primitive functions. The true optimization power of this example code becomes evident
upon a high number of repeated executions of this code in our algorithms.

Figure 2.

The overall pipeline for the optimization process.

8 Varsos C et al.

http://arpha.pensoft.net//display_zoomed_figure.php?fig_id=2479955
http://arpha.pensoft.net//display_zoomed_figure.php?fig_id=2479955
http://arpha.pensoft.net//display_zoomed_figure.php?fig_id=2479955

Example 2 High level optimization (level 2). In the example shown in Fig. 4 we
demonstrate the methodology we apply in a general function. As we seek to enhance its
performance we distribute our dataset and we run our code simultaneously for this
distributed dataset.

Generic Methodology

Our methodology for optimization aims to combine the solutions on the parallelization level
with those on the database storage aspect in a harmonious manner, and not just to
integrate them monolithically. More importantly, our methodology needs to be flexible

Figure 3.

Example of Low level optimization (level 1) applied to multiple and recurrent primitive
functions.

Figure 4.

Example of High level optimization (level 2) applied in general functions.

Optimized R functions for analysis of ecological community data using the ... 9

http://arpha.pensoft.net//display_zoomed_figure.php?fig_id=2400462
http://arpha.pensoft.net//display_zoomed_figure.php?fig_id=2400462
http://arpha.pensoft.net//display_zoomed_figure.php?fig_id=2400462
http://arpha.pensoft.net//display_zoomed_figure.php?fig_id=2400465
http://arpha.pensoft.net//display_zoomed_figure.php?fig_id=2400465
http://arpha.pensoft.net//display_zoomed_figure.php?fig_id=2400465

enough to be adapted to the different requirements of each function. For example, it is
expected that certain functions perform computationally intensive tasks on small datasets,
while others iterate simple operations on big datasets or produce bi-products during their
computation that are difficult to maintain in the main memory.

Fig. 5 presents schematically the general rationale of our methodology. Whenever
computations are too demanding and/or too big to fit in main memory (RAM), they are
broken down into chunks that can fit in memory. At the time of execution of a job by the
cluster, each available processor is assigned to perform a part of the necessary
computations. The outcome is then stored temporally in corresponding tables in the
PostgreSQL database. The next chunk is brought into memory to repeat the process. If the
data in the database is the final outcome of the function, as is the case with the taxa2dist
function, the tables can be reconstructed and stored in a Comma Separated Values (.csv)
file format. If, on the other hand, these tables are only some bi-product generated during
computation, they are retrieved part by part and aggregated to carry on with the execution.

It is important to note that the type of computations performed in each processor is not
necessarily restricted to primitive operations, such as matrix multiplication, outer product
etc. These operations have of course been redesigned to take advantage of the
decomposition of data to the processors available. Still, a big asset of the RvLab offered
functionalities is that they provide optimizations at higher levels of abstraction, such as in
combining sequences of commonly executed vegan functions into a single one.

For instance, a commonly executed workflow performed by biologists is to provide the
output of the taxa2dist function, which is usually a big square matrix, as input to the
taxondive function, which generates results of a small size. Both of these functions perform
executions of similar operations on the same data multiple times; our enhanced function
combines these two functions with a more efficient parallel algorithm that not only achieves

Figure 5.

Methodology adopted for operations with memory leakage.

10 Varsos C et al.

http://arpha.pensoft.net//display_zoomed_figure.php?fig_id=2180557
http://arpha.pensoft.net//display_zoomed_figure.php?fig_id=2180557
http://arpha.pensoft.net//display_zoomed_figure.php?fig_id=2180557

significantly quicker execution times, as evidenced in a following section, but also
overcomes the memory barriers that exist when the initial datasets are beyond a certain
limit. In fact, since the output of taxa2dist does not need to be stored, our function can be
used with input data of any size.

Supported optimized RvLab functions

A non-exhaustive list of supported RvLab functions is presented below:

· taxa2dist parallel, taxa2dist (local storage), taxa2dist > taxondive - The taxa2dist function
returns a distance matrix from a classification aggregation file which acts as input for
taxondive. The combination of these functions computes indices of taxonomic diversity and
distinctness, which are averaged taxonomic distances among species or individuals in the
community (Clarke and Warwick 1998, Clarke and Warwick 1999).

· anosim - Analysis of similarities (ANOSIM) provides a way to test statistically whether
there is a significant difference between two or more groups of sampling units. It is often
used as a hypothesis test after multidimensional scaling analysis.

· adonis - Analysis of variance using distance matrices in order to partition them among
sources of variation and fitting linear models (e.g. factors, polynomial regression) to
distance matrices. It uses a permutation test with pseudo-F ratios and it is the equivalent of
PERMANOVA analysis (Anderson 2001).

· mantel - Function mantel calculates the Mantel statistic as a matrix correlation between
two dissimilarity matrices, and function mantel.partial computes the partial Mantel statistic
as the partial matrix correlation between three dissimilarity matrices. The significance of
the statistic is evaluated by permuting rows and columns of the first dissimilarity matrix.

· simper - Returns a list of variables (e.g. species) that contribute to the average similarity
within and average dissimilarity between groups of samples, using Bray-Curtis index or
Euclidean distances.

· bioenv - Returns the best subset of environmental variables, so that the Euclidean
distances of scaled environmental variables have the maximum (rank) correlation with
community dissimilarities.

The rate statistics are computed using the formula in Suppl. material 3.

Funding: This work was supported by the LifeWatchGreece infrastructure (MIS 384676),
funded by the Greek Government under the General Secretariat of Research and
Technology (GSRT), ESFRI Projects, National Strategic Reference Framework (NSRF).

Web location (URIs)

Homepage: https://rvlab.portal.lifewatchgreece.eu/

Optimized R functions for analysis of ecological community data using the ... 11

http://www.gsrt.gr/
https://www.espa.gr/
https://rvlab.portal.lifewatchgreece.eu/

Technical specification

Programming language: R, Javascript, PHP, C#

Operational system: Windows or Linux or Mac

Interface language: HTML, CSS, Javascript

Usage rights

Use license: Other

IP rights notes: MIT license

Implementation

Implements specification

In this section we describe the RvLab web application and how a user can access it
through LifeWatchGreece portal. The following screenshots illustrate the web pages a user
goes through when using RvLab. After registering and logging in at portal's landing page
(Fig. 6 - left image), the user comes to portal's Home Page (Fig. 6- right image) where
direct access to RvLab (and other virtual laboratories) is available.

Figure 6.

Screenshot of portal's landing (left image) and home page (right image) available via the
LifeWatchGreece portal, displaying basic information on all virtual laboratories (including
RvLab).

12 Varsos C et al.

http://arpha.pensoft.net//display_zoomed_figure.php?fig_id=2576650
http://arpha.pensoft.net//display_zoomed_figure.php?fig_id=2576650
http://arpha.pensoft.net//display_zoomed_figure.php?fig_id=2576650

The main interface of RvLab is comprised by four panels (Fig. 7). The Workspace panel
(top left) allows users to upload .csv files that can be used as input and monitor their
available storage space. The Functions panel (right) allows users to select a statistical
function, configure it and submit a new job to run for execution. The Jobs panel (bottom
left) allows the user to keep track of his submitted jobs, monitor their status, view the
results or delete the ones that are not needed anymore. The Help panel contains
information about RvLab and its usage policies. Example datasets (Fig. 8) can also be
found there, if someone wants to try out RvLab without using his own input files.

a b

c d

Figure 7.

The RvLab main interface.

Figure 8.

Basic file formats supported by RvLab:
a: Aggregation file.
b: Environmental data file (quantitative).
c: Abundance matrix.
d: Factor file (qualitative).

Optimized R functions for analysis of ecological community data using the ... 13

http://arpha.pensoft.net//display_zoomed_figure.php?fig_id=2576677
http://arpha.pensoft.net//display_zoomed_figure.php?fig_id=2576677
http://arpha.pensoft.net//display_zoomed_figure.php?fig_id=2576677
http://arpha.pensoft.net//display_zoomed_figure.php?fig_id=3036853
http://arpha.pensoft.net//display_zoomed_figure.php?fig_id=3036853
http://arpha.pensoft.net//display_zoomed_figure.php?fig_id=3036854
http://arpha.pensoft.net//display_zoomed_figure.php?fig_id=3036854
http://arpha.pensoft.net//display_zoomed_figure.php?fig_id=3036855
http://arpha.pensoft.net//display_zoomed_figure.php?fig_id=3036855
http://arpha.pensoft.net//display_zoomed_figure.php?fig_id=3036856
http://arpha.pensoft.net//display_zoomed_figure.php?fig_id=3036856

Once a job is completed, the user can view the results page by clicking on the Job ID link
(Fig. 9 - left image). The result page (Fig. 9 - right image) may contain textual information
(i.e. "Significance values and taxonomic indices values"), graphical results (i.e. "Taxonomic
indices funnel plots") or file results. Result files can be downloaded or added to the
workspace for downstream analyses and further utilization in additional RvLab functions.

Screen shots showing examples of the graphical results generated by RvLab can be seen
in Fig. 10. The interactive SUMMARIZEplot function, utilizing JavaScript Data Drive
Documents (D3.js) and HTML (Fig. 10a) allows users to observe distributions of species
per station in bar charts, as well as pie charts, generated from the most abundant species
found in each station. The results of regression analysis, i.e. the linear model relationship
between environmental factors measurements during sampling, such as maximum depth
and bathythemetry, are shown in Fig. 10b. Outputs of Analysis of Variance (Anova) (Fig.
10c, left image) and Analysis of similarities (Anosim) (Fig. 10c, right image) can be used to
provide statistical significance for the relationship between environmental factors selected
by the user. Finally, Principal Component Analysis (PCA) showing an ordination (grouping)
of stations in a lower dimensional space, given their species abundance, is presented in
Fig. 10d. The user is given flexibility in assigning colour-codes according to selected
factors, such as the location of the sampling stations.

RvLab is developed in Hypertext Preprocessor (PHP) and has been integrated in the
LifeWatchGreece portal allowing registration to the common user database used for all
virtual laboratories available via the portal. This integration utilizes some background
Hypertext Transfer Protocol (HTTP) communication between the portal's core and RvLab's
web application that involves exchanging information regarding credentials and access
control privileges. Moreover, cron jobs have been deployed to ensure that policies are
enforced and job status is updated regularly through Asynchronous JavaScript and XML
(AJAX) calls. Although job execution takes place on a cluster, RvLab has direct access to

Figure 9.

The results page of RvLab.

14 Varsos C et al.

http://arpha.pensoft.net//display_zoomed_figure.php?fig_id=2576679
http://arpha.pensoft.net//display_zoomed_figure.php?fig_id=2576679
http://arpha.pensoft.net//display_zoomed_figure.php?fig_id=2576679

all job folders by mounting (through SSH) the rellevant cluster directories to the web server.
RvLab uses Portable Batch System (PBS) scripts to schedule each job for execution on the
cluster.

Mobile RvLab application (mobRvLab)

The RvLab mobile application (mobRvLab) has been developed by utilizing Unity3D
Platform and C# scripting language. The application is available for android and ios
platforms and functions on a dynamical and autonomous basis. It receives data in json
format from the LifeWatchGreece portal in real time by exploiting the appropriate web
services that have been developed. Whenever data are required, a secure proper
communication channel is established between the device and the portal.

As previously mentioned, the RvLab is available after registration and login to the
LifeWatchGreece portal. This is a pre-requisite in order the user to access mobRvLab by
utilizing the same account credentials. MobRvLab employs the same functionalities
adopted by the RvLab. The mobRvLab main page includes general information about the
application and also displays three main tabs: “Functions”, “Files” and “Jobs”. The

a b

c d

Figure 10.

Screen shots showing a few of the graphical results generated by RvLab functions.

Optimized R functions for analysis of ecological community data using the ... 15

http://arpha.pensoft.net//display_zoomed_figure.php?fig_id=3036873
http://arpha.pensoft.net//display_zoomed_figure.php?fig_id=3036873
http://arpha.pensoft.net//display_zoomed_figure.php?fig_id=3036874
http://arpha.pensoft.net//display_zoomed_figure.php?fig_id=3036874
http://arpha.pensoft.net//display_zoomed_figure.php?fig_id=3036875
http://arpha.pensoft.net//display_zoomed_figure.php?fig_id=3036875
http://arpha.pensoft.net//display_zoomed_figure.php?fig_id=3036876
http://arpha.pensoft.net//display_zoomed_figure.php?fig_id=3036876
https://portal.lifewatchgreece.eu/mobile_apps

“Functions” tab shows all available functions, same as in the portal version. The user can
select which function to run, including parallel implementations of available functions. In the
“Jobs” tab the user can view a jobs log file and keep track of each job status. The jobs are
presented and ordered by date. Each job can be selected for viewing results or for deletion.
The “Files” tab displays the user workspace and allows file management by uploading or
deletion of data files. In principle, the mobRvLab provides a direct link, via mobile access,
to the RvLab user account created in the LifeWatchGreece portal; jobs are executed in the
LifeWatchGreece cluster and not locally, hence allowing user access to the high
performance computational resources of the cluster via mobile appplication. The user can
choose to submit jobs and view results from either of the virtual laboratories, benefiting by
the usability and flexibility of RvLab in data analysis, as well as by the results acquisition.
Fig. 11 displays the data exchange web services and overall functionalities of the
mobRvLab.

RvLab mobile application is available for download at https://portal.lifewatchgreece.eu/
mobile_apps

a

b

Figure 11.

Mobile RvLab application web services and screen shots.
a: Data exchange web services between portal and mobile RvLab versions.
b: Overall workflow of the mobRvLab interface.

16 Varsos C et al.

http://arpha.pensoft.net//display_zoomed_figure.php?fig_id=3036882
http://arpha.pensoft.net//display_zoomed_figure.php?fig_id=3036882
http://arpha.pensoft.net//display_zoomed_figure.php?fig_id=3036882
http://arpha.pensoft.net//display_zoomed_figure.php?fig_id=3036883
http://arpha.pensoft.net//display_zoomed_figure.php?fig_id=3036883
http://arpha.pensoft.net//display_zoomed_figure.php?fig_id=3036883

Audience

The desired target audience is the average R user, without requiring expertise and prior
training in the field of algorithm optimization and parallelization. However, basic statistical
knowledge for using the analytical routines and for the interpretation of results is required.

Additional information

Experimental Evaluation

We conducted a series of experiments to evaluate the generic methodology described in
previous sections, in order to study (i) the speedup achieved with the new functions when
exploiting the resources of a multiprocessor environment and (ii) to identify optimal
allocation of resources given the size of the input data. The reported times are the average
of 3 runs for each configuration. They were conducted in a controlled environment, where
all external access was blocked; despite being an idealized environment, this setting
allowed us to reach consistent conclusions about the behaviour of the functions.

Experimental setup

Our experiments varied between functions requiring large amounts of memory to handle
input data, as well as functions performing computationally intensive tasks. For the former
category, datasets of increasing size have been used as input. The taxa2dist function, as
well as the combined taxa2dist+taxondive, fall into this category, as they rely on the
computation of a distance matrix that can become significantly big depending on the initial
dataset. For the latter category, we varied the number of computations, namely the number
of permutations that need to be executed before producing the result. For each of these
cases, we measured the execution time of the parallel version of our functions when
allocating a different number of processors and compared these times to the time needed
to run the serial function, i.e., the version provided by the vegan package. Note that in
certain cases the serial version could not be executed at all, e.g., when the available
memory was not enough to handle computations.

All experiments were conducted on a cluster involving 10 Intel Xeon CPU E5-2667 2.9GHz
cores with a total of 384Gb RAM. We measured times by allocating 1, 2, 4, 6, 8 or 10 CPUs
to the parallel functions, in order to study their behaviour. The results are presented
through a series of diagrams which are based on a comparative analysis; absolute timing is
mentioned only for verification. Although the current version of the RvLab portal runs over a
cluster having a different configuration, the messages conveyed by our experimental
analysis are still valid, as we are not interested in the absolute times measured, but rather
on the speed up that can be achieved.

Experiment 1. taxa2dist

The diagram in Fig. 12 shows the speedup achieved by running the parallel implementation
of the taxa2dist function in comparison to the serial one, for datasets having approximately

Optimized R functions for analysis of ecological community data using the ... 17

1,700 lines of species (small), 16,900 lines (medium) and 42,300 lines (large), respectively.
Specifically, the black line at 1x sets the boundary in speedup, as it denotes the execution
of the serial program itself. Obviously, no matter how many processors we assign to this
program, the execution time stays the same since no parallelization of operations is
possible within its code. For example, with the small dataset as input, the execution time
was 5.1 sec on average with 1 CPU and 5.0 sec with 10 CPUs; for the large dataset, these
times where 21.2 min and 21.1 min, respectively. We can safely conclude that the number
of processors do not significantly affect the serial program.

Any values below the 1x boundary denote execution times proportially higher to the serial
ones, whereas values above the boundary denote how many times faster the execution
was found to be. As mentioned above, we measured our parallel program having different
allocations of processors, in order to check at which setting the maximum speedup is
achieved. In other words, the diagram shows the behaviour (i.e., speedup) of the parallel
program in comparison to the serial one (vertical axis) given two parameters, the number of
processors assigned to the program (horizontal axis) and the size of the input data (colored
lines).

A first observation that can be made is that for small datasets the serial version is
somewhat faster than the parallel one. This is displayed by the points lying below the 1x
threshold. Indicatively, while the serial version required 5.1 sec on average to run the small
dataset as mentioned before, the parallel version with 2 CPUs needed 6.2 sec and with 4
CPUs 7.3 sec. For such small datasets, the differences in absolute times are very small,
therefore any delays introduced due to the initialization of the cluster seem to play an
important role.

Figure 12.

Computational results about optimization in taxa2dist's performance, considering the number
of processors (x-axis) and the size of the input data.

18 Varsos C et al.

http://arpha.pensoft.net//display_zoomed_figure.php?fig_id=2920771
http://arpha.pensoft.net//display_zoomed_figure.php?fig_id=2920771
http://arpha.pensoft.net//display_zoomed_figure.php?fig_id=2920771

The situation changes as the input dataset becomes bigger, where the parallel version is
faster in many cases. For example, with 4 CPUs the parallel version required 2.14 min for
the medium dataset and 14.5 min for the large one, whereas the serial version needed 3.4
min and 21.2 min, respectively.

Nevertheless, speedup decreases as we add more CPUs. This observation verifies a
conclusion already known in the ICT community: the parallel solution is not panacea and
proper allocation of resources needs to be made not only based on their availability, but
also on other parameters, such as the size of the input in our case. It seems that the cost
of communicating data between processors becomes considerable as we add more
processors.

It should be noted here that none of the aforementioned functions was able to operate with
datasets of larger size, due to memory overflow. For such datasets, one needs to revert to
the PostgreSQL variation that stores data on secondary memory, which inevitably takes
much longer times to execute.

Experiment 2. taxa2dist+taxondive

Since the output of taxa2dist is very often used as input to the taxondive function, we
implemented the parallel version that combines the two, as described in a previous section.
The taxondive computes indices of taxonomic diversity and distinctness, which are
averaged taxonomic distances among species or individuals in the community (Clarke and
Warwick 1998). This function has the added advantage that it manages to overcome
memory barriers: due to the algorithmic structure of these functions, one can break the
huge bi-products of taxa2dist into portions and complete the execution in an incremental
manner.

Fig. 13 shows the results obtained, revealing impressive speedups. For instance, while the
vegan functions require 4.1 hours to execute the large dataset, the parallel version, when
exploiting all 10 CPUs of the cluster, manages to reduce this time to 20 min on average.
Even for the smallest dataset, where the serial version needs 20.5 sec, the parallel version
runs faster, takeing 6.6 sec with 4 CPUs and 4.4 sec with 10 CPUs. One reason for
obtaining these results is the more efficient redefinition of the functions made when
rewriting the code: we reduced the work needed by avoiding duplicate calculations of
operations that exist in the vegan (serial) code of both the taxa2dist and taxondive
functions, and we utilized the same structures, wherever possible.

What is even more impressive is that we even managed to run datasets of much larger
sizes that cannot be executed otherwise: indicatively, we managed to complete the
calculation of the taxa2dist+taxondive function for an input dataset having 168,931 lines of
species in 6.6 hours when allocating 10CPUs.

Optimized R functions for analysis of ecological community data using the ... 19

Experiment 3. anosim

The next set of experiments concentrated on the anosim function. The preliminary profiling
tests we performed showed that the main issues one needs to tackle are concentrated on
the consumption of time and not on memory overflow. This time consumption is strongly
correlated with the number of “permutations” we introduce to the function.

As we see in Fig. 14, as we provide more processors to the parallel version, the execution
becomes faster. Another conclusion is that the number of permutations are counter
analogous to the algorithm’s running time, but we obtain higher speed up as we increase
the number of allocated processors for the increased amount of permutations. This
experiment was conducted with a 9 Mb dataset as input .

The above diagram (Fig. 14) suggests that the parallel version with 10 processors
completes up to 24 times faster the calculations in comparison to the serial anosim; more
specifically, it needs only 1.1 sec as compared to 27 sec. Also, every parallel version is
faster than the serial one, apart from the case where the available processors are less than
2. Also, when we have 10 – 1 permutations (orange broken line), the parallel version is
faster than the serial.

In Fig. 15, for larger datasets, we notice that most parallel versions improve the
computational time, except for the case with 10 – 1 permutations and with the number of
processors being less than 8. The parallel version with 10 – 1 permutations has
neglectable difference with respect to the serial one up until 8 processors. The maximum
optimization we achieve is 13 times with 10 processors, from 5.8 min to 28.9 sec. This
experiment used a 230 Mb dataset.

7

3

4

Figure 13.

Computational results about optimization in taxa2dist+taxondive's performance, considering
the number of processors (x-axis) and the size of the input data.

20 Varsos C et al.

http://arpha.pensoft.net//display_zoomed_figure.php?fig_id=2921149
http://arpha.pensoft.net//display_zoomed_figure.php?fig_id=2921149
http://arpha.pensoft.net//display_zoomed_figure.php?fig_id=2921149

Experiment 4. adonis

Our profiling tests with the adonis function revealed that no memory issues are likely to be
met in this case; instead, the main bottleneck that should concern us is the scaling of
computation effort. The dominant factor of time consumption is the number of permutations
set as input to the function, therefore we broke the task of computing them into chunks to
be assigned to each of the available processors.

Figure 14.

Computational results about optimization in anosim's performance, depending on permuations
and number of processors (np), for small datasets.

Figure 15.

Computational results about optimization in anosim's performance, depending on permuations
and number of processors (np), for large datasets.

Optimized R functions for analysis of ecological community data using the ... 21

http://arpha.pensoft.net//display_zoomed_figure.php?fig_id=2479957
http://arpha.pensoft.net//display_zoomed_figure.php?fig_id=2479957
http://arpha.pensoft.net//display_zoomed_figure.php?fig_id=2479957
http://arpha.pensoft.net//display_zoomed_figure.php?fig_id=2920343
http://arpha.pensoft.net//display_zoomed_figure.php?fig_id=2920343
http://arpha.pensoft.net//display_zoomed_figure.php?fig_id=2920343

Fig. 16 shows the speed up gains of the parallel versions. It is evident that the number of
processors assigned, directly affects the speed up in each version. Also the number of
permutations are counter analogous to the total computation time. As we increase the
number of available processors the computational time is reduced up to 12 times
compared to the serial version: for example, the serial version requires 8.1 min and the
parallel with 10 processors 40 seconds for 10 – 1 number of permutations. Another
interesting observation from the diagram is that the execution of parallel computations with
a small number of permutations (e.g., less than 10) is not faster than the serial on (black
line with circles) despite the resources allocated.

Experiment 5. simper

Similarly to the anosim and adonis functions, the simper function also relies on the number
of computations requested and not on the available memory. As before, we break the
permutations into chunks which are assigned to the available processors.

Fig. 17 shows the speed up gains implementing the parallel versions. The number of
processors is analogous to the speed up in each version. Also the number of permutations
are counter analogous to the total computation time, but as we increase the number of
available processors the computation time falls up to 5 times compared to the serial
version. For instance, the serial version needs 11 sec and the parallel with 10 processors 2
sec, for 10 – 1 number of permutations.

As we already observed in the experiments with the previous functions, we notice again
here that when the number of permutations is small parallelization is not always beneficial:
in fact, increasing the number of processors may hinder performance, due to the
communication costs involved.

7

4

4

Figure 16.

Computational results about optimization in the performance of adonis, depending on
permuations and number of processors (np).

22 Varsos C et al.

http://arpha.pensoft.net//display_zoomed_figure.php?fig_id=2479959
http://arpha.pensoft.net//display_zoomed_figure.php?fig_id=2479959
http://arpha.pensoft.net//display_zoomed_figure.php?fig_id=2479959

Experiment 6. mantel

Similarly to the previous functions, the mantel function relies on recurrent computations
without producing any memory leakage or overflow. These recurrent computations depend
on the number of permutation.

For further investigation we performed two classes of experiments, one for a small input
dataset, 9 Mb, and one for a large input dataset, 230 Mb. The diagrams in Figs 18, 19
show that the behaviour of both experiments follow the same principles as the experiments
for the previous functions.

Figure 17.

Computational results about optimization in simper's performance, depending on permutations
and number of processors (np).

Figure 18.

Computational results about optimization in mantel's performance, depending on permuations
and number of processors (np), for small datasets.

Optimized R functions for analysis of ecological community data using the ... 23

http://arpha.pensoft.net//display_zoomed_figure.php?fig_id=2479971
http://arpha.pensoft.net//display_zoomed_figure.php?fig_id=2479971
http://arpha.pensoft.net//display_zoomed_figure.php?fig_id=2479971
http://arpha.pensoft.net//display_zoomed_figure.php?fig_id=2479967
http://arpha.pensoft.net//display_zoomed_figure.php?fig_id=2479967
http://arpha.pensoft.net//display_zoomed_figure.php?fig_id=2479967

In Fig. 18, for the small dataset, as long as we assign less than 8 processors all parallel
efforts are less efficient than the serial mantel. Beyond this threshold, we notice a speed up
increase and the parallel version outperforms the serial one (black circled line). Finally,
using all 10 processors we reach the maximum speed up.

In Fig. 19, for large dataset, all parallel versions improve the computational time. The
maximum speed up gain is 15 times, for the parallel version with 10 processors, namely
1.2 sec instead of 20.2 sec for the serial mantel.

Experiment 7. bioenv

Bioenv also depends on repeated computations. The main difference with the previous
approach is that instead of breaking the permutation’s linked computations into chunks, we
break the ncol’s linked computations. This modification came along with a limitation. The
limitation suggests that it is not useful to use more processors than the number of ncol.

In Fig. 20 we report results from an experiment with a dataset with 1 ≤ ncol ≤ 8. As long as
we increase both the ncol parameter and the number of processors the speed up
increased. The bioenv serial version is faster than all parallel versions for ncol = 1. After
that, the limitation verified from the results, i.e., the experiment with ncol = 4 reaches 2
times speed up, for 4 processors, with respect to the serial bioenv, but if we increase
further the number of processors the speed up decreases and converges to 0. A general
conclusion drawn from Fig. 20 is that we gain the maximum speed up when the number of
available processors becomes equal with the number of ncol. Consequently, the maximum
speed up we can gain is about 4 times for the parallel version with 8 processors when ncol
= 8, namely we decrease the consumption time from 4.9 sec (serial version) to 1.2 sec (8
processors for ncol = 8).

Figure 19.

Computational results about optimization in mantel's performance, depending on permuations
and number of processors (np), for large datasets.

24 Varsos C et al.

http://arpha.pensoft.net//display_zoomed_figure.php?fig_id=2479969
http://arpha.pensoft.net//display_zoomed_figure.php?fig_id=2479969
http://arpha.pensoft.net//display_zoomed_figure.php?fig_id=2479969

Outlook and Future Work

Future implementations of the RvLab will include additional functions that are important for
environmental ecology, biodiversity, fisheries and modelling. The RvLab has the possibility
to incorporate a variety of functions and R packages, apart from the ones already
implemented, should the user contact the development team with a relevant request.
Moreover, we are currently also investigating issues of assigning jobs as a function of
available resources in order to ensure optimal core distribution and function execution for
all jobs submitted to RvLab.

Conclusions

The RvLab is a very useful and powerful tool, both for users who are already familiar with R
(and some of its functions) but also for students and/or scientists who are in favour of open
source software and would like to dedicate some time to get familiar with its functions,
without having to go through the steep command line R learning curve.

When compared with online virtual environments, such as the "Multivariate AnalysiS
Applications for Microbial Ecology (MASAME)" suite, apart from the intrinsic similarities
between the two platforms, it is obvious that the RvLab can implement a plethora of
functions, some of which are parallelized. Thus, the user can benefit from the availability of
newly designed functions if the dataset to be analysed requires their implementation.

The accessibility of RvLab is also one of its major advantages; apart from being part of the
LifeWatchGreece Infrastructure, it is also a part of the LifeWatch Marine Virtual Research
Environment (VRE). The LifeWatch Marine Virtual Research Environment (VRE) portal is
bringing together several marine resources, databases, data systems, web services, tools,

Figure 20.

Computational results about optimization in bioenv's performance, depending on number of
columns and number of processors (np).

Optimized R functions for analysis of ecological community data using the ... 25

http://arpha.pensoft.net//display_zoomed_figure.php?fig_id=2479975
http://arpha.pensoft.net//display_zoomed_figure.php?fig_id=2479975
http://arpha.pensoft.net//display_zoomed_figure.php?fig_id=2479975
http://mb3is.megx.net/eatme/
http://marine.lifewatch.eu/
http://marine.lifewatch.eu/

etc. into one marine virtual research environment, allowing researchers to retrieve and
access a great variety of data resources and tools.

In addition, the RvLab is an interactive virtual laboratory; should the user require other
types of functions, these can be added in the "laboratory" and become available online in a
short time. Therefore, the more users are logging in the portal and using it for their
analyses, the more they can improve the RvLab, given the enormous possibilities of its
programming language.

Appendix

The source code for the functions is available for download at the RvLab.

Acknowledgements

The authors would like to thank the LifeWatchGreece core team for constructive and
informative discussions and for their valuable input to issues regarding RvLab. This work
was supported by the LifeWatchGreece infrastructure (MIS 384676), funded by the Greek
Government under the General Secretariat of Research and Technology (GSRT), ESFRI
Projects, National Strategic Reference Framework (NSRF).

Author contributions

CV and TP contributed to the analysis, parallelization and evaluation of the functions. AO
and AG contributed to the overall design and implementations of the graphical interface.
UZI, NP, AFG and SF provided code for functions implemented at the RvLab. IF designed
the mobile application. CB, MD and CA had the initial idea for the creation of the RvLab.
CV, TP, AO, CP, EC, EP, EVB, SF and CA contributed to the write-up and proofreading of
the manuscript.

References

• Anderson M (2001) A new method for non-parametric multivariate analysis of variance.
Austral Ecology 26 (1): 32‑46. https://doi.org/10.1111/j.1442-9993.2001.01070.pp.x

• Buttigieg PL, Ramette A (2014) A guide to statistical analysis in microbial ecology: a
community-focused, living review of multivariate data analyses. FEMS Microbiology
Ecology 90 (3): 543‑550. https://doi.org/10.1111/1574-6941.12437

• Canhos VP, de Souza S, de Giovanni R, Canhos DAL (2004) Global Biodiversity
Informatics: setting the scene for a “new world” of ecological forecasting. Biodiversity
Informatics 1: 1. https://doi.org/10.17161/bi.v1i0.3

• Chen W-, Ostrouchov G, Schmidt D, Patel P, Yu H (2012) pbdMPI: Programming with
Big Data -- Interface to MPI. R Package. http://cran.r-project.org/package=pbdMPI

26 Varsos C et al.

https://rvlab.portal.lifewatchgreece.eu/
https://www.lifewatchgreece.eu/?q=content/core-team
https://www.lifewatchgreece.eu/?q=content/core-team
http://www.gsrt.gr/
https://www.espa.gr/
https://doi.org/10.1111/j.1442-9993.2001.01070.pp.x
https://doi.org/10.1111/1574-6941.12437
https://doi.org/10.17161/bi.v1i0.3
http://cran.r-project.org/package=pbdMPI

• Clarke KR, Warwick RM (1998) A taxonomic distinctness index and its statistical
properties. Journal of Applied Ecology 35 (4): 523‑531. https://doi.org/10.1046/
j.1365-2664.1998.3540523.x

• Clarke KR, Warwick RM (1999) The taxonomic distinctness measure of
biodiversity:weighting of step lengths between hierarchical levels. Marine Ecology
Progress Series 184: 21‑29. https://doi.org/10.3354/meps184021

• Conway J, Eddelbuettel D, Nishiyama T, Prayaga SK, Tiffin N (2013) RPostgreSQL: R
interface to the PostgreSQL database system. N/A N/A: N/A. URL: http://CRAN.R-
project.org/package=RPostgreSQL

• Kane M, Emerson J, Weston S (2013) Scalable Strategies for Computing with Massive
Data. Journal of Statistical Software 55 (14): 1‑19. https://doi.org/10.18637/jss.v055.i14

• Oksanen J, Blanchet GF, Kindt R, Legendre P, Minchin PR, O'Hara RB, Simpson GL,
Solymos P, Stevens MHH, Wagner H (2015) vegan: Community Ecology Package, R
package version 2.3-0. N/A, N/A pp. URL: http://CRAN.R-project.org/package=vegan

• Ostrouchov G, Chen W-, Schmidt D, Patel P (2012) Programming with Big Data in R.
online pp. URL: http://r-pbd.org/

• Oulas A, Pavloudi C, Polymenakou P, Pavlopoulos GA, Papanikolaou N, Kotoulas G,
Arvanitidis C, Iliopoulos I (2015) Metagenomics: Tools and Insights for Analyzing Next-
Generation Sequencing Data Derived from Biodiversity Studies. Bioinformatics and
Biology Insights 9: 75‑88. https://doi.org/10.4137/bbi.s12462

• Petrovskii S, Petrovskaya N (2012) Computational ecology as an emerging science.
Interface Focus 2 (2): 241‑254. https://doi.org/10.1098/rsfs.2011.0083

• R Core Team (2013) R: A language and environment for statistical computing. R
Foundation for Statistical Computing, Vienna, Austria, N/A pp. URL: http://www.R-
project.org/

• Schmidt D, Chen W-, Ostrouchov G, Patel P (2012) pbdDMAT: Distributed Matrix
Algebra Computation. R Package, URL http://cran.r-project.org/package=pbdDMAT . N/
A N/A: N/A. URL: http://cran.r-project.org/package=pbdDMAT

• Soberon J, Peterson T (2004) Biodiversity informatics: managing and applying primary
biodiversity data. Philosophical Transactions of the Royal Society B: Biological Sciences
359 (1444): 689‑698. https://doi.org/10.1098/rstb.2003.1439

• Tierney L, Jarjour R (2016) proftools: Profile Output Processing Tools for R. N/A N/A: N/
A. URL: http://CRAN.R-project.org/package=proftools

• Tierney L, Rossini AJ, Li N, Sevcikova H (2015) snow: Simple Network of Workstations.
N/A N/A: N/A. URL: http://CRAN.R-project.org/package=snow

• Urbanek S (2009) multicore: Parallel processing of R code on machines with multiple
cores or CPUs. online pp. URL: https://cran.r-project.org/package=multicore

• Wickham H (2014) profr: An alternative display for profiling information. N/A N/A: N/A.
URL: http://CRAN.R-project.org/package=profr

• Wickham H, Francois R (2015) dplyr: A Grammar of Data Manipulation. N/A N/A: N/A.
URL: http://CRAN.R-project.org/package=dplyr

• Yu H (2002) Rmpi: Parallel Statistical Computing in R. R News 2 (2): 10‑14. URL: http://
cran.r-project.org/doc/Rnews/Rnews_2002-2.pdf

Optimized R functions for analysis of ecological community data using the ... 27

https://doi.org/10.1046/j.1365-2664.1998.3540523.x
https://doi.org/10.1046/j.1365-2664.1998.3540523.x
https://doi.org/10.3354/meps184021
http://CRAN.R-project.org/package=RPostgreSQL
http://CRAN.R-project.org/package=RPostgreSQL
https://doi.org/10.18637/jss.v055.i14
http://CRAN.R-project.org/package=vegan
http://r-pbd.org/
https://doi.org/10.4137/bbi.s12462
https://doi.org/10.1098/rsfs.2011.0083
http://www.R-project.org/
http://www.R-project.org/
http://cran.r-project.org/package=pbdDMAT
http://cran.r-project.org/package=pbdDMAT
https://doi.org/10.1098/rstb.2003.1439
http://CRAN.R-project.org/package=proftools
http://CRAN.R-project.org/package=snow
https://cran.r-project.org/package=multicore
http://CRAN.R-project.org/package=profr
http://CRAN.R-project.org/package=dplyr
http://cran.r-project.org/doc/Rnews/Rnews_2002-2.pdf
http://cran.r-project.org/doc/Rnews/Rnews_2002-2.pdf

Supplementary materials

Suppl. material 1: Matrix 1

Authors: Varsos et al
Data type: images
Filename: Matrix1.png - Download file (12.51 kb)

Suppl. material 2: Matrix 2

Authors: Varsos et al
Data type: images
Filename: matrix2.png - Download file (16.42 kb)

Suppl. material 3: Equation 1

Authors: Varsos et al
Data type: images
Filename: equation1.png - Download file (6.40 kb)

28 Varsos C et al.

http://arpha.pensoft.net//getfile.php?filename=oo_64064.png
http://arpha.pensoft.net//getfile.php?filename=oo_64063.png
http://arpha.pensoft.net//getfile.php?filename=oo_64065.png

	Abstract
	Background
	New information

	Keywords
	Introduction
	Motivation and State-of-the-Art

	Project description
	Web location (URIs)
	Technical specification
	Usage rights
	Implementation
	Implements specification
	Audience

	Additional information
	Experimental Evaluation
	Outlook and Future Work
	Conclusions
	Appendix

	Acknowledgements
	Author contributions
	References
	Supplementary materials

