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Abstract

The  Molecular  Weevil  Identification  project  (MWI)  studies  the  systematics  of  Western

Palearctic weevils (superfamily Curculionoidea) in an integrative taxonomic approach of

DNA barcoding,  morphology  and  ecology.  This  barcode  release  provides  almost  3600

curated CO1 sequences linked to morphological vouchers in about 1300 weevil species.

The dataset is presented in statistical distance tables and as a Neighbour-Joining tree.

Bayesian Inference trees are computed for the subfamilies Cryptorhynchinae, Apioninae

and Ceutorhynchinae. Altogether, 18 unresolved taxonomic issues are discussed. A new

barcode primer set is presented. Finally, we establish group-specific genetic distances for

many weevil genera to serve as a tool in species delineation. These values are statistically

based on distances between "good species" and their congeners. With this morphologically

calibrated approach,  we could resolve most  alpha-taxonomic questions within the MWI

project.
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Introduction

With 400,000 described species, beetles (Coleoptera) constitute the most diverse animal

order (Slipinski et al.  2011, Bouchard et al.  2017). Amongst them, weevils (superfamily

Curculionoidea)  form  one  of  the  most  species-rich  taxa,  with  51,000  known  species

worldwide (Oberprieler et al. 2007). Exactly 15,407 weevil species are listed in the most

recent catalogue covering the entire Palearctic realm (Alonso-Zarazaga et al. 2017) and

about 3,500 species in the Western Palearctic (Löbl and Smetana 2011, Löbl and Smetana

2013).  Weevils  have  a  global  distribution.  Their  larvae  predominantly  develop  inside

various plant parts, while adults mostly feed on leaves or roots. Many species are highly

specialised; others feed on a wide range of plants (Zwölfer and Herbst 1988, Oberprieler et

al. 2007, Letsch et al. 2018). Weevils play an important ecological role. Some species are

pests in agriculture or forestry, for example, the large pine weevil Hylobius abietis (Leather

et al. 1999), the rice weevil Sitophilus oryzae or the maize weevil Sitophilus zeamais (Wu

and Yan 2018). Many Otiorhynchus species are greenhouse or horticultural pests (Thiem

1932, Sprick 2009). Taxonomic identification is easy for some common weevil species, but

for  many  others, it  is  challenging  and  requires  genital  preparation  and  considerable

taxonomic expertise.

The taxonomic impediment (Godfray 2002,  Godfray and Knapp 2004,  Wheeler  et  al.

2004) implies that the number of experts able to identify organisms to species level is

constantly decreasing (Irfanullah 2006), resulting - amongst other drawbacks - in

inaccurate biodiversity assessments (Giangrande 2003). To compensate for this deficiency

in  times  of  the  biodiversity  crisis,  two  DNA-based  approaches  were  simultaneously

proposed (reviewed in Meier et al. (2006), Hansen et al. (2007), Teletchea (2010)): The

DNA taxonomy concept by Tautz (Tautz et al. 2002, Tautz et al. 2003) proposed to utilise

DNA sequences of several predefined standard genes as the scaffold for taxonomy, but not

necessarily linked to the Linnaean binominal system. Hebert (Hebert et al. 2003a, Hebert

et al. 2003b) envisioned relatively short DNA barcodes from a single gene as a universal

system for re-identification purposes, ideally linked to current Linnaean names. Since then,

DNA barcoding (sequencing the 5'-half of the COI gene, Folmer et al. 1994, for animals)

has been widely  adopted by the scientific  community  and is  the most  commonly-used

molecular  marker  in  animals  (Waugh 2007,  Blaxter  2016),  also  demonstrated  by  over

11,000 barcoding-related publications by November 2022 (WOS, Web of Science search

for  the  term  "DNA barcod*"  in  title/abstract/keywords).  The  Barcode  of  Life  Database

(BOLD, Ratnasingham and  Hebert  2007),  currently  contains  barcodes  from almost  10

million specimens.

Genetic distances can be measured as a proportion of different nucleotide positions in

percent. An important prerequisite for DNA barcoding is that interspecific genetic distances
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vary significantly for at least a large majority of cases from intraspecific genetic distances.

This concept  is  often referred to as the barcoding gap (Meyer and Paulay 2005).  Its

existence was first stated for birds and various arthropod taxa (Hebert et al. 2003a, Hebert

et al. 2003b, Hebert et al. 2004a, Hebert et al. 2004b, Barrett and Hebert 2005, Hajibabaei

et al. 2006a, Hajibabaei et al. 2006b). The existence of the barcoding gap was thought to

be an artefact of insufficient sampling across taxa (Meyer and Paulay 2005, Wiemers and

Fiedler  2007,  Bergsten  et  al.  2012).  Over  the  years,  it  became  apparent  that  some

datasets  showed  more  or  less  pronounced  barcoding  gaps,  while  others  did  not

(depending  on  sampling,  geographic  region,  taxon  biology,  degree  of  morphological

crypsis, state of taxonomic revision of the group under study etc.).

Underlying morphological  misidentifications  pose  a  major  problem  to  DNA  barcoding

datasets and reference collections. Unfortunately, specimen misidentification is common in

literature,  in  collections  and  particularly  widespread  in  public  sequence  databases

(Pentinsaari et al. 2020) and might reach up to 56% for taxa difficult to identify (Shea et al.

2011).  The  use  of  obsolete  taxonomic  names  can  lead  to  similar  problematic  effects

(Mulcahy et al. 2022), especially in the absence of material vouchers (Pleijel et al. 2008, 

Astrin et al. 2013).

The Molecular Weevil Identification project (MWI) presented here strives to avoid pitfalls

that  arise  in  DNA  barcoding  studies,  when  not  backed  up  by  an  extensive  voucher

collection. MWI created a reference database of high-quality DNA barcodes from scratch.

Almost 1300 Western Palearctic weevil species have been barcoded, based on rigorous

vouchering  routines  and  project  criteria:  DNA  was  extracted  non-invasively  from

specimens, then mounted as morphological vouchers for the dry collection, accessible at a

public natural history collection (Leibniz Institute for the Analysis of Biodiversity Change,

Museum Koenig,  Bonn, Germany).  These morphological  vouchers are accompanied by

stored DNA extracts and tissue samples in a dedicated biobank at the same institute. The

laboratory infrastructure used in MWI was that of  the German Barcode of Life (GBOL)

project (Geiger et al. 2016). In several taxa, type localities were revisited to sample for the

MWI project. Only experienced researchers from the European coleopterists' association

Curculio Institute collected and identified the specimens morphologically (see specimen

data  table  in  Suppl.  material  1).  In  this  barcode release,  we did  not  add any  publicly

available sequences from GenBank, BOLD or other third parties to the dataset for quality

control reasons. For new species described during MWI, the DNA barcodes were mostly

generated from paratypes (collected at the same location as the holotype). If no paratypes

were available, the holotype was used for barcode generation. Specimens were recovered

during the lysis step to allow future validation of the initial identification. Embedding the

DNA barcoding  method  within  an  integrative  taxonomic  approach ( Will  et  al.  2005, 

Padial and De La Riva 2010) often helps to reveal cryptic diversity or synonyms (Hebert et

al. 2004b, Pons et al. 2006, Kerr et al. 2007). Over several years of preparation for the

present barcode release, dozens of alpha-taxonomic changes have been carried out, most

of  which  began  as  conspicuous  molecular  findings  and  were  then  corroborated

morphologically (often including the study of type material) and ecologically in a taxonomic

feedback loop (Page et al. 2005). Until  now, 157 taxonomic changes, including 80 new
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species descriptions, were based on MWI sequences. Most taxonomic changes refer to the

subfamilies Cryptorhynchinae, Apioninae and Ceutorhynchinae, for example, Schütte et al.

(2013), Stüben et al. (2013a), Stüben and Schütte (2013), Stüben (2014b), Stüben et al.

(2015), Stüben and Bayer (2015), Stüben et al. (2016a), Stüben (2017b), Stüben (2018b), 

Stüben (2018c), Stüben (2018a), Stüben and Schütte (2018).

In practice, most of these initial conspicuous molecular findings consisted of simple genetic

distances that were considerably higher (in relation to other intraspecific comparisons) or

lower  (in  relation to  other  interspecific  comparisons)  than expected.  Previous research

shows that genetic distance values very often coincide with species limits, but vary widely

by taxon and geographic setting, for example, 2.7% for a species delineation threshold for

North American birds (Hebert et al. 2004a), 4% for North American spiders (Barrett and

Hebert 2005) or 2% to 14% for Madagascan water beetles (Monaghan et al. 2005). The

relevant question in this context is: How does one know which values to expect?

Considerable  discussion  has  gone  into  the  topic  of  genetic  thresholds  as  criteria  for

species delimitation (10x rule in Hebert et al. (2004a), Monaghan et al. (2005)). We agree

that such threshold values cannot be used to delineate species (Wiemers and Fiedler 2007

,  Hubert  et  al.  2010)  as  a  subset  under  the  argument  that  DNA barcodes  alone  are

generally a poor criterion to describe species (Ahrens et al. 2021, Zamani et al. 2022).

However,  based  on  our  experience,  genetic  thresholds  can  be  profitably  used  as  a

heuristic criterion to highlight cryptic or problematic taxa in the vast majority of cases (new

species,  synonyms,  species  complexes),  to  be  confirmed  or  refuted  by  morphological

analysis.

This study presents a validated, taxonomically thoroughly curated barcode release with

almost 3600 sequences, the most extensive Western Palearctic weevil barcode dataset

until now, covering ca. 1300 weevil species. Based on this data and considering different

distribution  patterns,  we  also  give  group-specific,  statistically  derived  heuristic  hints

regarding  which  genetic  distance  values  fall  within  the  typical  interspecific  range.

Cryptorhynchinae, Ceutorhynchinae and Apioninae are represented in our dataset with a

high species coverage for the sampled region. Therefore, we specify such values only for

genera of those three subfamilies, providing minimum and average p‑distance values. By

sharing these data, we hope to accelerate specimen re-identification within the discussed

taxa  and  aid  in  prefiltering  future  cases  for  thorough  integrative  alpha-taxonomic

investigation.

Material and Methods

We analysed 3573 mitochondrial CO1 sequences of the DNA barcoding region (Hebert et

al. 2003a, based on Folmer et al. (1994)), representing 1296 valid species (1391 taxa if

infraspecific epithets and taxon qualifiers such as "cf." and "sp." are also counted). The

dataset  contains  2017  sequences  newly  released  in  this  study,  see  Suppl.  material  1

(GenBank accession numbers followed by a "new" tag).  See Suppl.  material  2 for  the

4 Schütte A et al



entire  dataset  in  FASTA format.  Both  supplements  can also  be downloaded externally

(DOI: 10.5281/zenodo.7430106).

Sampling: collecting locations

The geographic origin of the collected weevils is as follows: 2510 specimens (70% of the

dataset) were collected throughout continental Europe including the Mediterranean islands;

889 specimens (25% of the dataset) were collected on the Macaronesian islands including

the  Canaries,  Azores,  Madeira  Archipelago  with  Desertas  Islands  and  Savage  Islands

(Ilhas Selvagens); 164 specimens (5% of the dataset) were collected in continental North

Africa, mostly Morocco and Tunisia. Collecting locations of the sampled specimens are

plotted on two ArcGIS map baselayers with GPS Visualizer, see Fig. 1 (continental) and

Fig. 2 (Atlantic islands).

The  most  frequently  collected  Curculionidae  subfamilies  were:  Cryptorhynchinae  (1190

sequences, 278 species, subspecies not differentiated in the species count),  Entiminae

(576  sequences,  269  species),  Ceutorhynchinae  (537  sequences,  203  species),

Curculioninae (356 sequences, 168 species) and Apioninae (349 sequences, 115 species).

A  complete  overview  of  sequences  per  subfamily  is  shown  in  Fig.  3.  The  number  of

specimens collected per species is illustrated in Fig. 4: 16% of sequences are singletons,

the median is six specimens per species.

Figure 1.  

Continental collecting locations. Black dots = previously-released MWI sequences, red dots =

newly published with this study.
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Figure 2.  

Collecting locations of Atlantic islands. Black dots = previously-released MWI sequences, red

dots = newly published with this study.

 

Figure 3.  

Number of specimens per subfamily.
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Sampling: methodology

Most  specimens were collected directly  into  96% non-denatured ethanol  without  killing

agents. In some cases, we sequenced previously-collected dried specimens, usually not

more than five years old. Field data, voucher numbers and GenBank accession numbers

for all specimens are provided in Suppl. material 1. The pinned specimen vouchers (dry),

DNA vouchers  and,  where  available,  tissue  vouchers  (frozen,  same population  as  the

sequenced  individual)  are  deposited  at  the  Coleoptera  collection  respectively  at  the

Biobank of the Leibniz Institute for the Analysis of Biodiversity Change, Museum Koenig,

Bonn,  Germany  (ZFMK).  For  most  specimens,  the  pinned  specimen voucher  was  the

source of  the non-destructively isolated DNA. In previous extractions, the DNA derived

from the  frozen  tissue  samples  with  equal  emphasis  on  morphological  integrity  (MWI

samples  with  specimen  ID  lower  than  1823-PST;  see  Suppl.  material  1 for  naming

scheme).

Laboratory processing

The  laboratory  routine  for  Cryptorhynchinae  is  described  in  Astrin  et  al.  (2012).  The

laboratory routine for 91 sequences (specimen id 2906-PST to 3023-PST) is described in

Stüben  and  Kramp (2019).  The  laboratory  routine  for  all  other  samples  is  as  follows:

Genomic DNA was extracted from different parts of  the beetle or non-destructively (for

sample ID 1823-PST and higher) from whole specimens. Tissue lysis was performed at 56°

Celsius overnight. For DNA extraction, a BioSprint 96 magnetic bead extractor was used

with the corresponding kits, following the manufacturer's protocol for 200 µl elution volume

Figure 4.  

Number  of  specimens  sampled  per  species  (x-axis).  Number  above  the  bars  show  the

specimen  count  (y-axis).  Subspecies  level  not  considered,  unclear  identifications  are  not

counted in this figure (58x cf., 18x sp.). For 560 species, only one specimen was sampled.
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(Qiagen: Hilden, Germany). We amplified the 5'-end of the CO1 (Cytochrome c oxidase

subunit  1) gene with degenerate primers (Table 1):  reaction volume of 20 μl;  2.5 μl  of

undiluted  DNA  template;  Multiplex  PCR  Master  Mix  (Qiagen)  with  16  pmol  primer

concentration for each primer (1.6 µl of 10 pmol/µl primer). The standard PCR product

retrieved for weevils is 658 nucleotides (nt/bp) in length.

Primer Name 5'-3' Read Direction Reference Optimised for

LCO1490-MWI ACWAAYCATAARRAYATYGG this study (new) Apioninae &

Ceutorhynchinae
HCO2198-

MWI

TADACTTCDGGRTGDCCRAARAATCA this study (new)

LCO1490-JJ CHACWAAYCATAAAGATATYGG Astrin and Stüben

(2008) 

Cryptorhynchinae 

HCO2198-JJ AWACTTCVGGRTGVCCAAARAATCA Astrin and Stüben

(2008) 

LCO1490-JJ2 CHACWAAYCAYAARGAYATYGG Astrin et al. (2016) universal (arthropods)

HCO2198-JJ2 ANACTTCNGGRTGNCCAAARAATCA Astrin et al. (2016) 

Thermal  cycling  was  performed  on  GeneAmp  PCR  System  2700  instruments  (Life

Technologies, Carlsbad, USA) as follows: hot start  Taq activation: 15 min at 95°C; first

cycle set ("touch down" with 15 repeats): 35 s denaturation at 94°C, 90 s annealing at 55°C

(−1°C/cycle) and 90 s extension at 72°C. Second cycle set (25 repeats): 35 s denaturation

at 94°C, 90 s annealing at 40°C and 90 s extension at 72°C; final elongation: 10 min at

72°C. Amplicons were purified with the ExoSAP-IT kit (USB Corporation, Cleveland, Ohio)

and  sequenced  bidirectionnally  using  the  PCR  primers  (Table  1)  at  BGI  Genomics

(Shenzhen, China) or Macrogen (Amsterdam, The Netherlands) facility.

Data analyses

Contig assembly and trimming of primer regions were performed in Geneious Pro 6.1.8

(Kearse et al. 2012). The sequences were screened for: 1) pseudogenes (NUMTs, Song et

al. (2008)) by inspection of the reading frame for stop-codons and 2) endosymbionts by

visual inspection of each taxon position in the NJ tree and NCBI BLAST (Madden 2002). In

case  of  inconsistency,  the  sequence  was  excluded,  followed by  re-amplification  or  re-

extraction and re-amplification.

Table 1. 

PCR primer sets. LCO1490-JJ & HCO2198-JJ (Astrin and Stüben 2008) were used for all samples

first, success rate was about 95% in both directions. If PCR or sequencing failed, reactions were

repeated with  a  different  primer  set,  either  LCO1490-JJ2 & HCO2198-JJ2 (higher  degeneracy,

Astrin et al. (2016)) or repeated with the newly-developed primer set LCO1490-MWI & HCO2198-

MWI.
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The  dataset  contains  3573 weevil  barcodes,  of  which  3302 sequences  cover  the  full

barcode  length  (658  bp),  272  sequences  are  shorter.  Two  sequences  (GU987885, 

MG229813) barely failed to reach the 500 bp minimum required by BOLD (Milton et al.

2013) and were kept in the dataset.

Alignment. DNA  sequences  were  aligned  with  the  Muscle  ( Edgar  2004)  plug-in  in

Geneious using default  parameters (Drummond et  al.  2012)  and visually  inspected for

misaligned ends. The alignment is provided in Suppl. material 2.

Neighbour-Joining tree. The Neighbour-Joining (NJ, Saitou and Nei (1987)) tree is based

on the nucleotide sequence alignment of the entire dataset of 3573 weevil sequences plus

one outgroup species (Chrysomelidae, GenBank FJ867810). The NJ tree was created in

Geneious Pro 6.1.8 (Kearse et al. 2012) with JC69 nucleotide substitution model (Jukes

and Cantor 1969). The tree is provided in Suppl. material 3.

Bayesian  Inference. Phylogenetic  trees,  based  on  Bayesian  Inference,  were

reconstructed for three sub-datasets:

1) MrBayes sub-dataset for Cryptorhynchinae + Cossoninae: 1311 sequences in total,

1190 sequences from Cryptorhynchinae, 120 additional sequences from Cossoninae plus

one outgroup species (Anthribidae, GenBank FJ867818).

2) MrBayes sub-dataset for Apioninae + Nanophyinae + Attelabidae: 367 sequences in

total,  349 sequences from Apioninae,  5  additional  from Attelabidae,  12 additional  from

Nanophyinae plus one outgroup species (Cryptorhynchus lapathi,  D-0354-lap, GenBank

EU286523).

3) MrBayes sub-dataset for Ceutorhynchinae: 537 Ceutorhynchinae sequences plus one

outgroup (Cryptorhynchus lapathi, D-0354-lap, GenBank EU286523).

Based on the Bayesian information criterion value (BIC, Schwarz (1978)), calculated with

jModelTest 0.1.1 (Posada 2008), we applied the GTR+I+G substitution model (Lanave et

al. 1984) for all Bayesian analyses. We ran MrBayes (Ronquist and Huelsenbeck 2003)

MPI version 3.2.7 multiprocessor version with eight cores in two independent replicates,

each with one cold chain and three chains of different temperatures (standard setting). The

genetic  code  for  metazoan  mitochondrial  DNA  (metmt)  was  defined.  The  third  codon

position  of  the  GO1  gene  was  unlinked  in  shape,  revmat,  statefreq  and  pinvar.  The

analyses ran for  20 million generations,  sampling 20,000 trees.  Negative log-likelihood

score  stabilisation  was  checked  in  a  separate  visualisation  in  Microsoft  Excel  2013.

Accordingly, we retained 19,900 trees after discarding the burn-in data, of which a 50%-

majority rule consensus tree with posterior probabilities was built. Geneious was used for

the graphical display of the tree. The trees are provided in Suppl. material 5.

DiStats statistics (p-distance calculation)

The  Perl  script  DiStats  (Astrin  et  al.  2016)  simplifies  the  processing  and  statistical

inspection of DNA barcode datasets. Amongst other functions, it  calculates intraspecific
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and interspecific genetic distances for a given nucleotide alignment. The interspecific p-

distance values per genus and distribution (island, continental) are provided for the genera

of the three weevil subfamilies in the focus of this study. See Suppl. material 6 for an in-

depth  description  of  input  data  selection,  raw  output  files,  DiStats  results  and  data

compilation. The following references are used exclusively in the suppl. material: Stüben

and Behne (2010), Morris (2011), Kratky (2015), Morris and Barclay (2015), Russell and

Velazquez de Castro (2015), Stüben (2017a) and Sprick (2019).

The description below is the shortened version.

Confidence groups. For DiStats analysis, only Cryptorhynchinae, Ceutorhynchinae and

Apioninae species are taken into account (datasets of the best-sampled subfamilies). The

sequences of each species are assigned to one of three confidence groups:

• Confidence group 1 (reference species /  "good species"):  Contains taxa,  which

were morphologically clear in the past; one synonym allowed for Cryptorhynchinae,

three synonyms allowed for Ceutorhynchinae and Apioninae, otherwise moved to

confidence group 2;

• confidence group 2 (congener dataset): Contains valid taxa which created some or

many synonyms or subspecies, not evaluated as reference species (not a "good

species"),  but  available  as  congeners  in  the  dataset;  taxa,  which  were

morphologically difficult or ambiguous to identify;

• confidence group 3: (omitted species or specimens): Contains problematic taxa like

species complexes or potentially new species, those were excluded from DiStats

analyses.

Only sequences / specimens from confidence groups 1 and 2 were used in DiStats

statistics. 

Distribution groups. The reference species ("good species)" were also assigned to one

out  of  four  geographical  distribution  groups  (Table  2)  to  assess  the  effect  of  different

geographical distribution sizes with respect to interspecific genetic distances. The external

supplement (DOI: 10.5281/zenodo.7430565) contains the geographical distribution maps

used for the estimation of the maximum distribution range of each reference species.

Distribution group ISL (island) C1 (endemic) C2 (medium) C3 (large)

Cryptorhynchinae island(s) up to 50 km 50 to 500 km 500 km and above

Apioninae island(s) up to 50 km 50 to 2,000 km 2,000 km and above

Ceutorhynchinae island(s) up to 50 km 50 to 2,000 km 2,000 km and above

Interspecific distances per genus and distribution. We examined the p-distances from

the reference species to its closest congeners. Only for the reference species, the distance

values  to  each  closest  congener  were  used  to  create  genus  lists  with  minimum  and

Table 2. 

Geographical distribution groups defined for the genera lists.
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average  interspecific  distance  values  per  geographic  distribution  group.  The  closest

congener can be another reference species or a taxon assigned to confidence group 2

(congener dataset). We never used the p-distances from taxa of confidence group 2; those

were kept only to increase the amount of congeners in the DiStats dataset.

ASAP analysis

The programme 'Assemble  Species  by  Automatic  Partitioning'  (ASAP,  Puillandre  et  al.

(2021)) estimates the species amount in a barcode dataset and suggests 10 p-distance

threshold  values  for  species  delineation.  ASAP  is  the  successor  of  the  programme

'Automated Barcode Gap Discovery' (ABGD, Puillandre et al. (2012)). We used the three

sub-datasets  created  for  DiStats  with  ASAP  (Cryptorhynchinae,  Apioninae,

Ceutorhynchinae). Those sub-datasets only contain taxa from confidence group 1 ("good

species") and confidence group 2 ("congener dataset"), see DiStats above. We compare

the ASAP-calculated genospecies (MOTUs, Floyd et al. (2002), Blaxter (2004)) with the

morphological identification and counted wrongly assigned species for each dataset. We

have two questions: 1) how reliable is a species delineation, based on a single threshold

per  dataset  and 2)  is  the best  fitting  threshold  suggested by the programme the best

possible one to match the morphological species identifications? See Suppl. material 7 for

further details about the data assembly.

Results

There  remain  18  apparent  contradictions  between  morphological  identification  and

molecular results, see NJ tree in Suppl. material 3. These have been deliberately included

in the dataset and are discussed in the results of taxonomy chapter in Suppl. material 4.

Most of these cases await  synonymisation or constitute very young species or species

complexes challenging to disentangle with the CO1 gene. The following references are

used exclusively in the suppl. material 4: Dieckmann (1979), Freude et al. (1981), Freude

et  al.  (1983),  Stüben (1994),  Funk and Omland (2003),  Bahr  et  al.  (2008),  Skuhrovec

(2009),  Stüben and Astrin  (2010),  Stüben et  al.  (2012),  Stüben et  al.  (2013b),  Stüben

(2014a), Schütte and Stüben (2015), Stüben et al. (2016b).

Neighbour-Joining tree

The NJ tree with the complete MWI dataset is shown in Suppl. material 3. At genus level,

the NJ tree shows a very high congruence with the initial  morphological identifications.

Even higher taxa are mostly recovered as monophyletic and often cluster in a very similar

way as reconstructed in Bayesian analysis, although NJ is neither a phylogenetic method

nor is the mitochondrial CO1 gene alone considered suitable to resolve the relationships of

higher taxa due to genetic saturation (Arbogast et al. 2002, Hebert and Gregory 2005).

Additionally, at the species level, the neighbour-joining clustering algorithm delivers results

that are consistently concordant with the Bayesian Inference.
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Misidentified  specimens  are  easy  to  spot  in  trees  when  embedded  into  a  matrix  of

congeneric sequences – misidentified singletons are much more difficult to detect. Beyond

misidentified  specimens,  conflicts  can  be  caused  by  cryptic  species  or  unresolved

synonyms.  Several  of  such  inconsistencies  have  been  clarified  by  taxonomists  of  the

Curculio Institute over the last years, especially in Cryptorhynchinae, Ceutorhynchinae and

Apioninae (see Introduction), thus delivering a cleaner picture for this barcode release.

Bayesian trees

The Bayesian consensus trees focusing on three groups within the dataset are provided in

Suppl.  material  5:  Cryptorhynchinae and Cossoninae with  1311 sequences;  Apioninae,

Nanophyinae and Attelabidae with 367 sequences; Ceutorhynchinae with 538 sequences.

The Bayesian posterior probabilities mostly show full  or at least high (> 90) support in

between species.  The phylogenetic  trees show substantially  more polytomies than the

phenetic  NJ  tree.  Nevertheless,  taxon  placements  with  regard  to  the  closest  related

species in the dataset mostly coincide between both methods or have marginal deviations.

Thus, the Bayesian tree overall confirms the morphological species identifications and also

the naming contradictions, based on unresolved taxonomic issues in the same way as the

NJ tree.

DiStats analysis (p-distance values)

The DiStats statistics are presented in Table 3 (Cryptorhynchinae), Table 4 (Apioninae) and

Table 5 (Ceutorhynchinae). For each genus the minimum and the average value of the

smallest  available  distance value  to  the  closest  congener  is  provided.  The results  per

genus are separated into the four distribution groups defined in Table 2, referring to the

size of the distribution area: island distribution (ISL), continental endemic (C1), medium

distribution (C2) and large distribution (C3).

For genera of the subfamily Cryptorhynchinae, the average distance value between the

closest available congener (often sister species) ranges from 3.8% (Silvacalles) to 19.9% (

Torneuma).  For genera of Apioninae, the average distance between the closest related

congener  ranges  from  1.7%  (Taeniapion)  to  18.2%  (Pseudoperapion).  For  genera  of

Ceutorhynchinae, the average distance between the closest related congener ranges from

6.4% (Hesperorrhynchus) to 17.8% (Scleropterus).

For some genera, the smallest p-distance value is significantly lower than the average

one. This is often caused by just a single specimen within the genus. For example, in

Exapion, the average distance between species is 7.0%, while the lowest value between

two species is 2.3%. The closest conge Accept ner pair in this case is Exapion compactum

vs. Exapion uliciperda. All taxa and their closest congeners are listed in the spreadsheets

in tab "DiStats_results" (Suppl. material 6).
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Cryptorhynchinae island(s)/

archipel

island(s)/

archipel

endemic

(50 km)

endemic

(50 km)

medium

(50-500

km)

medium

(50-500

km)

large (>

500 km)

large (>

500 km)

Distribution group ISL ISL C1 C1 C2 C2 C3 C3

Genus min. dist.

to closest

congener

min. dist.

to closest

congener

min. dist.

to closest

congener

min. dist.

to closest

congener

min. dist.

to closest

congener

min. dist.

to closest

congener

min. dist.

to closest

congener

min. dist.

to closest

congener

Acalles 8.4 9.0 3.2 7.0 6.2 10.6 7.1 11.7

Acallocrates 13.0 13.3

Acallorneuma 5.8 7.3 3.0 6.8 8.8 8.8

Aeoniacalles 8.8 9.1

Calacalles 3.2 6.0 14.3 14.3

Canariacalles 6.4 6.4

Caucasusacalles 15.3 15.3

Coloracalles 12.2 12.2

Dendroacalles 3.7 7.3

Dichromacalles 7.3 7.3 12.3 13.4 12.9 13.7

Echinodera 3.3 9.6 5.8 11.6 5.8 11.4 6.1 10.8

Echiumacalles 6.8 6.8

Elliptacalles 7.1 7.1

Ficusacalles 6.5 6.5

Kyklioacalles 8.8 8.8 4.3 7.8 4.9 9.0 7.1 10.2

Lauriacalles 10.2 10.2

Madeiracalles 1.8 8.5

Montanacalles 13.7 13.7

Onyxacalles 7.6 8.8 4.0 7.1 4.0 7.1

Pseudodichromacalles 6.4 7.7

Silvacalles 0.9 3.8

Table 3. 

Summarised  DiStats  results  for  genera  of  Cryptorhynchinae.  Numbers  indicate  uncorrected  p-

distance values (genetic distances) expressed in percent. Two values are given per genus and

distribution range: 1. minimum distance to the closest congener within all species in the dataset and

2. average distance to the closest congener within all species in the dataset. Abbreviations: min. =

minimum, dist. = distance.
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Cryptorhynchinae island(s)/

archipel

island(s)/

archipel

endemic

(50 km)

endemic

(50 km)

medium

(50-500

km)

medium

(50-500

km)

large (>

500 km)

large (>

500 km)

Distribution group ISL ISL C1 C1 C2 C2 C3 C3

Genus min. dist.

to closest

congener

min. dist.

to closest

congener

min. dist.

to closest

congener

min. dist.

to closest

congener

min. dist.

to closest

congener

min. dist.

to closest

congener

min. dist.

to closest

congener

min. dist.

to closest

congener

Sonchiacalles 8.3 8.8

Torneuma 5.8 10.2 16.4 16.9

Apioninae island(s)/

archipel

island(s)/

archipel

endemic

(50 km)

endemic

(50 km)

medium

(50-2000

km)

medium

(50-2000

km)

large (>

2000 km)

large (>

2000 km)

Distribution

group

ISL ISL C1 C1 C2 C2 C3 C3

Genus min. dist.

to closest

congener

min. dist.

to closest

congener

min. dist.

to closest

congener

min. dist.

to closest

congener

min. dist.

to closest

congener

min. dist.

to closest

congener

min. dist.

to closest

congener

min. dist.

to closest

congener

Aizobius 10.8 10.8

Alocentron 10.5 10.5

Apion 6.3 8.6

Aspidapion 4.4 4.4 4.9 4.9

Catapion 8.5 11.2

Ceratapion 10.8 10.8 4.4 8.6

Cistapion 15.8 15.8

Cyanapion 10.9 11.8

Diplapion 8.1 8.1 3.0 3.0

Eutrichapion 11.0 11.0

Exapion 10.5 10.5 2.3 7.0

Hemitrichapion 12.6 13.5

Holotrichapion 5.0 8.7 7.5 10.3

Table 4. 

Summarised DiStats results for genera of Apioninae.  Numbers indicate uncorrected p-distance

values (genetic distances) expressed in percent. Two values are given per genus and distribution

range: 1. minimum distance to the closest congener within all species in the dataset and 2. average

distance to the closest congener within all species in the dataset. Abbreviations: min. = minimum,

dist. = distance.
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Apioninae island(s)/

archipel

island(s)/

archipel

endemic

(50 km)

endemic

(50 km)

medium

(50-2000

km)

medium

(50-2000

km)

large (>

2000 km)

large (>

2000 km)

Distribution

group

ISL ISL C1 C1 C2 C2 C3 C3

Genus min. dist.

to closest

congener

min. dist.

to closest

congener

min. dist.

to closest

congener

min. dist.

to closest

congener

min. dist.

to closest

congener

min. dist.

to closest

congener

min. dist.

to closest

congener

min. dist.

to closest

congener

Ischnopterapion 13.3 13.3

Ixapion 12.6 12.6

Kalcapion 4.3 4.7 4.1 4.1

Lepidapion 2.7 2.7

Loborhynchapion 13.2 13.2

Malvapion 11.7 11.7

Omphalapion 13.2 13.2 13.2 13.2

Onychapion 13.2 13.2

Oryxolaemus 8.5 8.5

Oxystoma 11.1 11.5

Perapion 2.1 2.1

Phrissotrichum 8.2 8.2 8.2 8.2

Protapion 4.4 7.2

Protopirapion 14.3 14.3

Pseudapion 7.8 7.8 7.8 10.5

Pseudaplemonus 15.5 15.5

Pseudoperapion 18.2 18.2

Pseudoprotapion 14.6 14.6

Pseudostenapion 17.6 17.6

Rhopalapion 11.6 11.6

Stenopterapion 12.6 12.6 12.6 13.2

Synapion 13.2 13.2

Taeniapion 4.2 7.0 1.7 1.7

Taphrotopium 13.4 13.4

Trichopterapion 16.4 16.4
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Ceutorhynchinae island(s)/

archipel

island(s)/

archipel

endemic

(50 km)

endemic

(50 km)

medium

(50-2000

km)

medium

(50-2000

km)

large (>

2000 km)

large (>

2000 km)

Distribution group ISL ISL C1 C1 C2 C2 C3 C3

Genus min. dist.

to closest

congener

min. dist.

to closest

congener

min. dist.

to closest

congener

min. dist.

to closest

congener

min. dist.

to closest

congener

min. dist.

to closest

congener

min. dist.

to closest

congener

min. dist.

to closest

congener

Aphytobius 7.6 7.6 7.6 7.6

Auleutes 15.7 15.7

Barioxyonyx 14.1 14.9

Brachiodontus 15.7 15.8

Ceutorhynchus 5.5 9.8 6.8 9.8 4.1 9.1

Coeliodinus 13.7 13.7

Datonychidius 15.4 15.4

Drupenatus 13.5 13.5

Eucoeliodes 14.6 14.6

Eubrychius 12.1 12.1

Glocianus 13.2 13.3

Hadroplontus 10.9 10.9

Hesperorrhynchus 5.0 6.4

Homorosoma 14.3 14.3

Marmaropus 15.9 15.9

Mesoxyonyx 14.6 14.6

Micrelus 11.9 11.9

Microplontus 12.3 14.0

Mogulones/

Datonychus 
7.8 8.7 11.6 13.1 6.1 11.1

Mogulonoides 13.4 13.4

Neoglocianus 10.7 10.7

Table 5. 

Summarised  DiStats  results  for  genera  of  Ceutorhynchinae.  Numbers  indicate  uncorrected  p-

distance values (genetic distances) expressed in percent. Two values are given per genus and

distribution range: 1. minimum distance to the closest congener within all species in the dataset and

2. average distance to the closest congener within all species in the dataset. Abbreviations: min. =

minimum, dist. = distance
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Ceutorhynchinae island(s)/

archipel

island(s)/

archipel

endemic

(50 km)

endemic

(50 km)

medium

(50-2000

km)

medium

(50-2000

km)

large (>

2000 km)

large (>

2000 km)

Distribution group ISL ISL C1 C1 C2 C2 C3 C3

Genus min. dist.

to closest

congener

min. dist.

to closest

congener

min. dist.

to closest

congener

min. dist.

to closest

congener

min. dist.

to closest

congener

min. dist.

to closest

congener

min. dist.

to closest

congener

min. dist.

to closest

congener

Neophytobius 14.9 14.9

Oprohinus 15.1 15.1

Oreorrhynchaeus 12.5 12.5

Parethelcus 8.6 8.6

Paroxyonyx 9.7 11.3 9.7 10.9

Pelenomus 11.5 13.4

Perioxyonyx 16.0 16.0

Phrydiuchus 12.2 12.2 10.5 11.5

Poophagus 14.4 14.4

Prisistus 15.7 15.7 12.9 12.9

Ranunculiphilus 12.8 12.8

Rhinoncus 8.4 8.4 7.0 10.1

Scleropterus 17.8 17.8

Scleropteridius 15.9 15.9

Sirocalodes 10.6 10.6 10.6 10.6

Thamiocolus 13.1 13.2 12.8 13.8

Trichosirocalus 12.0 12.0 12.6 13.6

Zacladus 12.2 12.2

ASAP analysis

See Table 6 for summarised results of the ASAP calculation and subsequent evaluation of

concordance between calculated MOTUs and morphospecies; see Suppl. material 7 for

data assembly and full length results. Based on the programme's calculation, the ASAP-

score is not a reliable identifier for the confidence level of the suggested threshold (ASAP-

score: "the lower, the better"), at least not for the three sub-datasets: Cryptorhynchinae

partition 1 with the lowest ASAP-score of "8.5" shows 19% wrongly assigned taxa, while

partition 6 with an ASAP-score of "17" shows 16% wrongly assigned taxa (3% less). The

ASAP-score  does  not  deliver  helpful  information  here.  Apioninae partition  1  with  the

lowest ASAP-score of "3" shows 14% of wrongly assigned taxa, while partition 6 with an
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ASAP-score of "9.5" shows just 7% of wrongly assigned taxa. Thus, the partition/threshold

with  the  higher  ASAP-score  is  providing  a  much  better  threshold  for  that  subfamily.

Ceutorhynchinae partition  1,  with  the  lowest  ASAP-score  of  "1",  shows  6%  wrongly

assigned taxa, while Partition 10, with an ASAP-score of "18.5", also shows 6% wrongly

assigned taxa. The suggested p-distance threshold value for partition 1 is 5.1%, while it is

5.5% for  partition 10.  The threshold  values only  show minor  differences and a similar

amount of wrongly assigned taxa are to be expected. Still, one time, the ASAP-score is the

lowest  (highest  confidence)  and the other  time,  the highest  (least  confidence).  On the

contrary, partition 3, with a relatively high ASAP-score of "11" and a threshold value of

5.0% (nearly the same as partition 1), shows the lowest percentage of wrongly assigned

taxa (5% error rate). Thus, the partition/threshold with the higher ASAP-score can provide

a better one.

ASAP

results

ASAP

results

ASAP

results

ASAP

results
evaluation of

concordance

evaluation of

concordance

evaluation of

concordance

ASAP

Partition 

MOTUs Threshold

[%]

ASAP-

score 

no of wrongly

assigned taxa 

no of wrongly

assigned seqs. 

% of wrongly

assigned seqs.

Cryptorhynchinae sub-dataset (contains 265 morphospecies, 1106 sequences)

1 236 7.3 8.5 74 214 19%

2 241 7.2 9.0 73 214 19%

3 315 3.8 9.5 84 190 17%

4 348 2.4 15.0 104 206 19%

5 639 0.4 16.5 373 480 43%

6 251 6.8 17.0 68 181 16%

7 325 3.4 24.5 86 193 17%

8 316 3.7 25.5 83 186 17%

9 302 4.3 29.0 84 205 19%

10 329 3.1 29.5 89 189 17%

Apioninae sub-dataset (contains 114 morphospecies, 342 sequences)

1 95 6.0 3.0 19 47 14%

Table 6. 

Left side of table: summarised ASAP results, right side of table: evaluation of concordance between

MOTUs  and  morphospecies.  For  each  subfamily  dataset,  10  different  thresholds  ("ASAP

partitions") and derived MOTUs are calculated by ASAP. The evaluation of concordance provides

the deviations between MOTUs and morphospecies for each given threshold; wrongly assigned

MOTUs are given in absolute numbers and in percent. Marked tables point to the threshold which

fits  best  to  each  subfamily  dataset  (lowest  number  of  deviation  between  MOTUs  and

morphospecies).
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ASAP

results

ASAP

results

ASAP

results

ASAP

results
evaluation of

concordance

evaluation of

concordance

evaluation of

concordance

ASAP

Partition 

MOTUs Threshold

[%]

ASAP-

score 

no of wrongly

assigned taxa 

no of wrongly

assigned seqs. 

% of wrongly

assigned seqs.

2 93 7.3 4.5 21 52 15%

3 92 7.5 5.0 22 52 15%

4 87 8.2 5.5 28 61 18%

5 94 6.8 7.5 17 41 12%

6 111 3.8 9.5 13 25 7%

7 88 8.1 11.0 24 57 17%

8 129 1.9 14.5 24 29 8%

9 116 3.0 14.5 16 28 8%

10 112 3.3 15.0 13 27 8%

Ceutorhynchinae sub-dataset (contains 199 morphospecies, 491

sequences)

1 204 5.1 1.0 17 28 6%

2 191 6.9 7.0 19 38 8%

3 206 5.0 11.0 15 24 5%

4 186 7.7 11.5 19 40 8%

5 235 2.2 13.0 37 59 12%

6 190 7.1 13.5 18 37 8%

7 178 8.5 14.0 23 64 13%

8 183 7.8 16.0 20 42 9%

9 178 8.6 16.5 23 46 9%

10 203 5.5 18.5 18 31 6%

Discussion

The present DNA barcode release provides results for almost 1300 Western Palearctic

weevil taxa. This dataset's strength lies in its thorough validation of specimens, including

the actual  nomenclatorial  resolution  of  many cases of  previous  taxonomic  conflicts  (in

preceding publications within the MWI project). The correct identifications are mirrored in a

high consistency  between morphological  identifications and molecular  results.  The

ambiguous cases where molecular and morphological evidence could not be reconciled

are  discussed  (Suppl.  material  4).  These conflicts  mainly  have  their  basis  in  pending
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synonymisations or are caused by species complexes that cannot be resolved via DNA

barcoding. In most cases, initial  discrepancies between morphological identification and

molecular results could be resolved by confirming or falsifying initial identification. In the

latter  case,  additional  resampling  was  needed  and,  in  some  situations,  holotype

comparisons, partly leading to taxonomic changes.

DiStats  statistics.  The  most  densely  sampled  subfamilies  in  the  dataset  often  show

genus-specific distances between species; see Suppl. material 6. Within each subfamily in

focus, there are genera with small mean interspecific distances and others with high mean

interspecific  distances.  For  example,  the  Cryptorhynchinae  dataset  shows  an  average

distance of 3.8% in the genus Silvacalles, while in the genus Torneuma, the average lies at

10.2% (both with island distribution). In Apioninae, the interspecific average ranges from

1.7% (Taeniapion)  to  18.2% (Pseudoperapion;  both  taxa  have  a  large  distribution).  In

Ceutorhynchinae,  it  ranges from 6.4% (Hesperorrhynchus,  island distribution)  to 17.8%

(Scleropterus, medium distribution, continental). Contrary to our initial expectations, it  is

clear that there does not exist a single threshold per subfamily that would characterise

usual species limits. We also expected the species' distribution scales to be correlated in

some form with the average genetic distances between species, but this is not the case

either.  For  example,  in  the genus Echinodera,  the average distances for  the mainland

distribution groups are 11.6% (small, endemic), 11.4% (medium), 10.8% (large), showing a

slightly decreasing tendency from small to large geographical distribution. For the genus

Kyklioacalles,  this  tendency  is  reverted:  7.8%  (small,  endemic),  9%  (medium),  10.2%

(large).

By summarising the statistical findings, it can be concluded that applying a single general

genetic threshold for species delineation leads to mismatches between morphospecies and

MOTUs, either false positives (oversplits) or false negatives (lumps). These mismatches

are also clearly demonstrated in the ASAP results (see Table 6 and Suppl. material 7), with

10 widely-varying thresholds. No matter whether an increased or decreased threshold is

applied,  there  remain  significant  deviations  between  morphospecies  and  calculated

MOTUs, although no questionable taxa are included in the ASAP sub-datasets.

Targeting  alpha-taxonomic  questions  with  a  single  threshold  approach  likely  leads  to

unsatisfactory  error  rates  between  5%  and  43%  (see  ASAP  results  in  Table  6,  right

column).

ASAP or other single-threshold approaches are a convenient option to estimate species

richness  in  widely-unknown  biota  or  when  there  is  no  option  to  resort  to  using

morphological  information.  Additionally,  within  a  rough  biodiversity  assessment  (e.g.

metabarcoding), a small taxonomic error rate might not distort the final result. However,

incorrect identifications can subsequently be incorporated into further studies. In the worst

case, long-term environmental programmes could generate error cascades which can have

a negative impact on environmental management and conservation (Bortolus 2008, Isaac

et al. 2004).
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It is known that undersampling leads to artificially increased interspecific genetic distances,

creating deeper splits in trees and wider barcoding gaps (Moritz and Cicero 2004, Morando

et al. 2003). Undersampling leads likewise to higher interspecific genetic distances in the

DiStats  statistics  (Tables  3,  4,  5).  This  study's  species  coverage of  the  subfamilies

Apioninae and Ceutorhynchinae is far from complete. The dataset contains 115 (29%) of

roughly  400  binomial  Apioninae  taxa  and  204  (51%)  of  roughly  400  binomial

Ceutorhynchinae  taxa  of  the  Western  Palearctic  (Löbl  and  Smetana  2011,  Löbl  and

Smetana 2013). By adding further sequences to the dataset,  we assume the minimum

average p-distance values will decrease significantly for some genera. Unlike in Apioninae

and Ceutorhynchinae, the genera-specific distances of the Cryptorhynchinae dataset are

not  strongly  affected by  undersampling.  We have covered 278 of  384 (72%) currently

known binomial Cryptorhynchinae taxa (Stüben 2018b). From our observation, if the sister

species is missing in the dataset, the remaining congeners are marginally more distant

(higher p-distance values). For example, the adelphotaxon to Acalles granulimaculosus is

Acalles pilula, both taxa are included in the dataset and they show a genetic distance of

11.3%.  By  removing  Acalles pilula from  the  dataset,  the  closest  congener  is  Acalles 

globulipennis, with a genetic distance of 12.3%. Thus, the minimum interspecific genetic

distance for this taxon would increase by 1% in the DiStats output  data table and the

calculated average minimum distance for the genus Acalles from 9% to 9.2% in the island

species compilation (Table 3).

Besides missing several species, sampling usually could not cover the entire geographic

distribution of  most  continental  taxa  in  our  dataset.  Complete  sampling  within  each

species' full geographic distribution range would likely reveal higher intraspecific distances

than we can observe in the trees. Thus, we have not focused on intraspecific variation for

the time being. Bergsten et al.  (2012) found the intraspecific variation in Agabini diving

beetles  to  be  significantly  correlated  with  the  geographic  scale  of  sampling:  up  to  70

individuals were required to sample 95% of the intraspecific variation.

Future collecting of weevils on the Western Palearctic mainland should bear this in mind

and should strive to fill the mentioned gaps. The Canary Islands were extensively sampled.

The dataset usually contains at least one specimen per taxon from each island (for multi-

island  distributions)  or  several  collecting  spots  per  island  (for  endemic/single  island

distributions). Most species occurring in the Canaries do not occur on the mainland. Many

mainland  species,  however,  especially  in  Apioninae  and  Ceutorhynchinae,  occur  far

beyond the Western Palearctic. Species distribution maps for the three subfamilies in focus

are provided as external supplement under DOI 10.5281/zenodo.7430565.

The many different examples from the literature (Coyne and Orr 1997, Sasa et al. 1998, 

Presgraves 2002, Mendelson 2003, Hebert et al. 2003a, Hebert et al. 2003b, Hebert et al.

2004a, Hebert et al. 2004b, Barrett and Hebert 2005, Monaghan et al. 2005, Vences et al.

2005, Zigler et al. 2005, Hickerson et al. 2006, Lefebure et al. 2006, Mikkelsen et al. 2007, 

Wiemers and Fiedler 2007, Hubert et al. 2008, Hundsdoerfer et al. 2009, Robinson et al.

2009, Acs et al. 2010, Hubert et al. 2010, Candek and Kuntner 2015, Spasojevic et al.

2016)  clearly  demonstrate  that  different  groups have different  genetic  variabilities  (see

Suppl. material 8 for a summary of the previously mentioned references). Useful thresholds
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to delineate animal species boundaries using CO1 barcodes are often found between 4%

and 15% genetic distance. However, almost every reference has deviant taxa with larger

or  smaller  values.  Besides  subsampling,  a  taxon's  age,  modes  of  evolution  and

reproduction  and  its  current  and  historical  distribution  (range  size,  climate,  isolation

barriers)  can  shape  such  distances.  No  single  threshold  would  hold  for  all  taxa,  but

knowing the average and minimum genetic distances between species within a specific

(taxonomically  limited group of  interest)  can be a vital  supplementary  tool  in  resolving

taxonomic issues. For the weevil subfamilies we studied, we found that the taxonomic level

for defining a common barcode threshold cannot meaningfully be established above the

genus. Applying a threshold on genus level usually allows comparisons of species sharing

a similar distribution pattern, evolutionary age and/or occupying similar ecological niches.

The thresholds we propose to use as heuristic support tools for future research in these

groups are well-calibrated morphologically and based on "good species". These values can

provide  a  reference  for  future  alpha-taxonomic  weevil  research  consistent  with  the

definitions  or  understanding  of  existing  species.  Genetic  distances  are  easy  to

measure, but prompt the question of how much distance is needed to delineate species.

On the morphological side, each weevil group has its own set of particular characteristics

used for morphological identification, which specialists have agreed upon over time, often

somewhat subjectively. Morphological variations (intraspecific and interspecific) have been

the  basis  of  discussions  in  taxonomy  ever  since  and  are  crucial  to  study  prior  to  a

taxonomic  change.  Those  morphological  characters used  for  identification  and

delineation are mostly  based on the consensus principle of  the scientific  community.

Essential characters in one group, bristle length, for example, might not play any role in

another group, where perhaps the colouration pattern on the elytra or the protrusion of the

eyes may constitute the central diagnostic characters. Based on many years of experience,

a  specialist  will  know  about  those  morphological  characters  in  his/her  studied  group.

Known  morphological  variability  within  species  is  well  factored  in  when  examining

differential characters for a new species description. Comparable situations arise when NJ

trees  or  their  underlying  genetic  distances  are  discussed  (molecular  intraspecific  and

interspecific variation), for example, when a single species appears in two neighbouring

clusters. Based on a solely molecular point of view, those clusters might be separated by

sufficient distance to infer the existence of a new species. Still, the morphologist may know

from experience that those two clusters belong to a geographic variation.

A -  mostly  historical  -  quantitative approach for  species delineation was morphological

phenetics  or  "numerical  taxonomy"  (Sneath  and Sokal  1973).  In  weevils,  for  example,

comparative  results  were  published  to  delineate  Ischnopterapion modestum and

Ischnopterapion plumbeomicans with dozens of minimum, maximum and average length

measurements from each body part  of  the two weevil  species (Ehret  1991).  However,

phenetics  is  unable  to  recover  evolutionary  relationships  as  it  does  not  differentiate

between  homology  and  homoplasy.  Thus,  it  has  been  substituted  with  computational

methods which can deliver an approximation of phylogeny (Wägele 2005).

New species descriptions, based solely on DNA barcoding, have been carried out or at

least suggested for cryptic species or species complexes soon after DNA barcoding was
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established (Brower 2010, Cook et al. 2010, Jörger and Schrödl 2013, Doerder 2018). This

strategy has recently been used for hyperdiverse taxa from the tropics as well (Butcher et

al. 2012, Riedel et al. 2013a, Riedel et al. 2013b, Meierotto et al. 2019, Sharkey et al. 2021

). Providing only a DNA barcode (Doerder 2018) or a consensus sequence (Sharkey et al.

2021) without thoroughly investigating the (group-specific) interspecific distances means

postponing the (molecular)  differential  diagnosis.  Discriminatory  positions as differential

diagnosis  (proposed by Cook et  al.  (2010),  applied by Jörger  and Schrödl  (2013) and

Meierotto  et  al.  (2019))  involve some uncertainty.  They might  become invalid  as more

specimens are collected, covering additional intraspecific variation from the same species

or from closely-related species. Nevertheless, these approaches may constitute a way to

capture  the biodiversity  of  underdescribed taxa quickly.  Riedel  et  al.  (2013b) state:  "A

combination of  digital  imaging and molecular techniques allows the reduction of  formal

species descriptions to brief but highly accurate diagnoses. Although none of these tools is

novel in itself, the progressive element is their combination and streamlining to produce a

large  number  of  usable  species descriptions,"  provided  the  identifier  has  access  to  a

sequencing facility  and sufficient  morphological  knowledge to  seek and find differential

characters on the pictures provided.

Yet, excluding morphology is not commonly accepted in the scientific community 

(Pante et al. 2015, Ahrens et al. 2021, Zamani et al. 2022), even not for protists (Warren et

al. 2017). Using a universal genetic distance threshold to compellingly delineate species

would decouple taxonomy from the previously-established systematics. It would lead into

the direction of a "parallel taxonomy", which has been rejected 20 years ago (see Sperling

(2003) on Tautz' DNA taxonomy concept in Tautz et al. (2002) and Tautz et al. (2003)).

Relying solely  or  predominantly  on DNA barcodes for  species descriptions promises a

turbo taxonomy (Butcher et al. 2012) or fast-track taxonomy (Riedel et al. 2013a). It

seems appealing when morphology reaches its limits or performance increase is in focus

(Fernandez-Triana 2022). In the long run, a trade-off between molecular quick-wins and

morphological expertise may occur, for example, how to examine type specimens. Waiving

morphological  diagnoses in  taxonomically  challenging cases will  most  likely  supersede

conventional species descriptions soon if precautions are not being taken.

The taxonomic inflation issue was addressed before DNA barcoding was introduced.

Concerns were based on the practice of raising taxa from subspecies to species level, thus

resulting in a change of the species concept rather than new species discoveries (Isaac et

al.  2004, Rylands and Mittermeier 2014).  This issue gains special  relevance in light of

DNA-based approaches. Even moderate differences in genetic distances between clusters

of individuals can reach high statistical significance (Galtier 2019, Vences 2020), further

prompting  taxonomists  to  rank  such  clusters  as  subspecies  or  species  (Hey  2009).

However, we propose subspecies should not be seen as anything other than heuristic

guides.  They should prompt the community to consult an integrative array of methods,

such  as  morphological,  molecular,  biogeographic,  ecological  or  ethological,  prior  to

elevating subspecies to species status. This would make decisions on species status much

more sustainable.
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Adding  nuclear  markers in  combination  with  phylogenetic  models  like  multi-species

coalescent model improve the accuracy of  species delineation drastically (Eberle et  al.

2020,  Miralles  et  al.  2020,  Dietz  et  al.  2021).  They  can  easily  uncover  mitochondrial

introgression, a possible downside of extrachromosal inheritance of the CO1 barcoding

gene.  Within  the  dataset  of  this  study,  we encountered  two  conspicuous  cases  of

introgression: Hesperorrhynchus linaeotesselatus (Stüben and Kratky 2016) and Cionus 

griseus (Stüben and Behne 2015, Stüben et al.  2021, see further information in Suppl.

material 4). Still, simply adding genes cannot assist in developing a molecular species

concept (Galtier 2019) and does not answer questions regarding genetic thresholds in

species  delineation,  since  speciation  circumstances  (e.g.  divergence  times,  population

size) and sampling depth affect the dataset in the same way. Barcoding the holotype (as

non-destructively as possible) is the gold standard in molecular taxonomy. This has been

done for some MWI holotypes, for example, Madeiracalles beelzebubi Stüben & Kratky,

2018 or Torneuma alexi Stüben, 2018 (both described in Stüben (2018b)). Only a holotype

provides an objective link to its Linnean binomen. Type material is often difficult to access.

Most type-holding institutions still offer on-site inspections, which requires travelling. Often

they only refer to photos of the specimens available on their web page. Loaning is still

offered in some cases, but comes with waiting periods (sometimes even several years,

based on the second author´s experience). To send out type specimens is time-consuming

and exposes them to the risk of getting lost. If barcodes of most holotypes were openly

available, requesting shipping of type material could be omitted in many cases. Using a

paratype specimen to retrieve the DNA barcode is the second best choice if the collecting

location  matches  the  holotype's  and  sympatric  occurrence  is  unlikely,  for  example,

Torneuma korwitzi (Stüben and Schütte 2015). Surprisingly, the latter is rarely discussed in

literature. Most insects were described before the advent of molecular tools. Barcoding of

historical type material  (hDNA) is  not a new idea, but still  controversial  due to often

invasive processing of the most valuable collection specimens (Townson et al. 1999, Mayer

et al. 2021, Raxworthy and Smith 2021). However, we should be aware that retroactive

barcoding  of  type  material  facilitates  robust  and  sustainable  knowledge  gain in

taxonomy to  solve  existing  and future  research  questions  (Strutzenberger  et  al.  2012, 

Prosser  et  al.  2015,  Speidel  et  al.  2015,  Hausmann  et  al.  2016,  Scherz  et  al.  2020, 

Raxworthy and Smith 2021, Roycroft et al. 2022, Mulcahy et al. 2022). A final option to gain

reliable  DNA  barcodes  after  the  new  species  has  been  described,  is  recollecting

specimens from the type locality (Jörger and Schrödl 2013, Bell et al. 2020), which was

also one focus of the MWI project.

During the past 250 years, almost every taxonomic change was based on morphological

characters, continuously re-evaluating the underlying morphological characters. Hence for

weevils,  we can assume this  "cleanup process"  has  built  a  strong  foundation  of  valid

morphological characters in most cases. We suggest preserving the already established

and globally-accepted Linnean understanding of species as taxonomic backbone. This

will  ease the progression from a morphology-based past into a strong molecular-based

future taxonomy, which will  be compatible with the past.  The risk of  a disjunct  parallel

taxonomy  would  be  decreased  and  the  potential  taxonomic  inflation  restrained  to  a

minimum. The morphologically calibrated genus-specific distance values, based on "good
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species"  (Tables  3,  4,  5),  constitute  a  somewhat  reliable  direction  for  species  of  the

molecularly  well-sampled  subfamily  Cryptorhynchinae  and  an  initial  approximation  for

Apioninae and Ceutorhynchinae. In general, the results of the molecular dataset (CO1)

should be utilised in an integrative taxonomy approach, i.e. discussed with morphological

and  ecological  aspects,  geographical  distribution  and  evolutionary  age  of  the  taxon  in

focus.

Here,  we  should  address  some  pitfalls  to  prevent  future  inflationary  species

descriptions:

1.  Ignoring  the  minimum  interspecific  distances  of  the  sister  species. The

interspecific  genetic  distances for  weevils  are mostly  group-specific.  A group can be a

genus  (e.g.  Torneuma or  Silvacalles),  but  it  can  also  be  a  subgenus  (e.g.  subgenus

Euphorbioacalles of the genus Dendroacalles) or even a species complex (e.g. Acalles 

maraoensis complex).  The  interspecific  distances  of  the  sister  species  should  be

considered. If no sister species pair is available in the dataset, the closest congeners can

be taken for an approximation. Otherwise, newly-collected specimens originating from a

different population might be potentially classified as new species. Even small distances

can create a split in a tree and might justify a new species description at first glance. If the

interspecific distance of the potential new species falls below the previously known minimal

one, the researcher should be cautious not to describe a synonym. A description can

still  be carried out if  strong reasons justify the new species (Stüben and Schütte 2015, 

Garcia et al. 2019), for example, the young age of the new species or clear differences in

morphologic characters under strong selective pressure, for example, in the aedeagi.

2.  Single  sequences  per  taxon  or  population. Using  a  single  sequence  per  taxon

drastically  increases  the  risk  of  wrong  conclusions  when  applied  to  alpha-taxonomic

questions because intraspecific variation is not shown, but can be high for some taxa. In

addition to the increased risk of misidentifications in singletons, not including intermediate

specimens (of the same species) can create an artificial  split  in a tree which could be

misinterpreted as a newly-discovered species, especially if  the analysed individual  was

collected far from the previously-known sequence. If a species has a disjunct distribution,

providing just one sequence from each population increases the likelihood of producing a

synonym. This risk especially applies to islands. Artificial deep splits can be produced if the

intraspecific distances within a population coincide with or even exceed the interspecific

distances.  On dataset  compilation,  the full  sampling depth should be used.  Using a

single sequence from each population instead of all available sequences means leaving

out all intermediate specimens belonging to the same species. The intraspecific distances

then present themselves as an artificial deep split. The latter might be the case for some

Laparocerus taxa described recently (Faria et al. 2016, Machado et al. 2017). For a more

detailes explanation see Stüben (2022).

3.  Gaps  in  existing  sequence  databases. A  large  genetic  distance  to  the  closest

congener in a sequence database is not proof of having discovered a new species. Often,

no  reference  sequences  of  the  sequenced  species  have  been  previously  deposited.

Subsequently,  a  misinterpretation  of  the  interspecific  genetic  distance  to  the  closest
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database match, for example, 15% to the closest deposited one, can lead to describing a

synonym,  particularly  if  the  sister  species'  type  material  is  not  consulted.  Although

potentially new species can be discovered very quickly with DNA barcoding (Riedel et al.

2013a, Meierotto et al. 2019, Sharkey et al. 2021), they must be taxonomically secured in

the same way as traditionally done, at least for well-revised taxa: either by comparing all

closely-related  species  morphologically  to  the  potential  new species  and/or  (especially

where the former option is not an option) or by consulting barcodes from all closely-related

species.  Unfortunately,  a  described species  lacking  this  validation  can be  laborious  to

refute. Most of the work (type comparison, sequencing) has to be carried out by a third

party if the original author failed to do so. Unfortunately, it can be assumed that there will

be a relatively large number of  quickly described species in the future,  only based on

barcodes and not backed up by holotype comparisons. This situation can arise in island

biota, for which one quickly tends to assume endemism: a candidate species is discovered

by molecular means and described without holotype comparison to the continental fauna

(e.g. in Garcia et al. (2022)). In this context, the candidate species carries the risk of being

a synonym, because the species might have been described already from the mainland.

The wrong conclusion "it must be a new species" is quickly made if no public sequence is

available. Vice versa, new descriptions should always be supported by molecular data to

prevent describing a synonym – also by other researchers at a later point. Sometimes,

formerly established unique morphological traits used for species description can turn out

to  be  misleading  diagnostic  characters  after  molecular  data  become  available.  The

cryptorhynchine species Calacalles agana Stüben, 2010 (Stüben 2010) can serve as an

example: the author described the species without molecular support and synonymised it

several  years  later  (Stüben  2015).  Another  case  with  conflicting  results  between

morphology and DNA barcoding is Aeoniacalles aeonii bodegensis (see Suppl. material 9, 

Stüben (2005), Stüben and Germann (2005), Stüben and Astrin (2011)).

Following  the  biological  species  concept  (Mayr  1942),  one  could  consider  conducting

cross-breeding experiments (Stüben 2005) for some generations prior to a new species

description.

External supplementary material

Data Type: geographical distribution maps. Brief description: the ZIP file contains 613

distribution  maps  from Western  Palearctic  weevil  taxa.  The  distribution  maps  showing

Europe  originate  from  the  Curculio  Institute's  website  (www.curci.de).  Additional

information on distribution range and known synonyms were based on the information from

the Löbl catalogues (Löbl and Smetana 2011, Löbl and Smetana 2013). The maximum

distribution range of each species was measured in km with Google Earth's ruler function.

Download via Zenodo DOI: 10.5281/zenodo.7430565 (368.1 MB).

Data Type: Material Table and CO1 sequences. Brief description: alternative download

source for the material table and the CO1 sequences used in this study. Download via

Zenodo DOI: 10.5281/zenodo.7430106 (3.9 MB).
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