Biodiversity Data Journal : Data Paper (Biosciences)
Print
Data Paper (Biosciences)
Dataset of long-term monitoring of ground-dwelling ants (Hymenoptera: Formicidae) in the influence areas of a hydroelectric power plant on the Madeira River in the Amazon Basin
expand article infoItanna O. Fernandes, Jorge L.P. de Souza‡,§
‡ Instituto Nacional de Pesquisas da Amazônia - INPA, Coordenação em Biodiversidade - CBio, Av: André Araújo, 2936. Petrópolis. 69067-375, Manaus, Brazil
§ Programa de Pós-Graduação em Ciência e Tecnologia para Recursos Amazônicos, Instituto de Ciências Exatas e Tecnologia (ICET), Itacoatiara, Brazil
Open Access

Abstract

Background

Biodiversity loss is accelerating rapidly in response to increasing human influence on the Earth’s natural ecosystems. One way to overcome this problem is by focusing on places of human interest and monitoring the changes and impacts on the biodiversity. This study was conducted at six sites within the influence area of the Santo Antônio Hydroelectric Power Plant in the margins of the Madeira River in Rondônia State. The sites cover a latitudinal gradient of approximately 100 km in the Brazilian Amazon Basin. The sampling design included six sampling modules with six plots (transects) each, totaling 30 sampling plots. The transects were distributed with 0 km, 0.5 km, 1 km, 2 km, 3 km and 4 km, measured perpendicularly from the river margin towards the interior of the forest. For sampling the ground-dwelling ants, the study used the ALL (ants of the leaf litter) protocol, which is standardized globally in the inventories of ant fauna. For the purpose of impact indicators, the first two campaigns (September 2011 to November 2011) were carried out in the pre-filling period, while campaigns 3 to 10 (February 2012 to November 2014) were carried out during and after the filling of the hydroelectric reservoir. A total of 253 events with a total of 9,165 occurrences were accounted during the monitoring. The ants were distributed in 10 subfamilies, 68 genera and 324 species/morphospecies. The impact on ant biodiversity during the periods before and after filling was measured by ecological indicators and by the presence and absence of some species/morphospecies. This is the first study, as far as we know, including taxonomic and ecological treatment to monitor the impact of a hydroelectric power plant on ant fauna.

New information

Until recently, most studies conducted on hydroelectric plants, located in the Amazon Basin, were carried out after the implementation of dams in order to assess their impacts on the environment and biodiversity (Benchimol and Peres 2015, Latrubesse et al. 2017, Sá-Oliveira et al. 2015). Recent studies on dam impacts have begun to be conducted prior to dam implementation (e.g. Bobrowiec and Tavares 2017, Fraga et al. 2014, Moser et al. 2014), thus providing a better overview of the impact and a better assessment of its magnitude.

Keywords

Formicidae, biodiversity, species occurrence, standardized sampling protocol, tropical forest.

Introduction

Biodiversity loss is accelerating rapidly in response to increasing human influence on the Earth’s natural ecosystems (Pimm et al. 1995, Vitousek 1997). Knowing the spatial and temporal organization of species in natural environments is essential for the understanding and conservation of biodiversity (Barton et al. 2013), as well as fostering land management decisions (Evans and Viengkham 2001). Large-scale, spatially structured sampling is a powerful tool to help land managers decide where to pursue conservation action most effectively (Turner et al. 1995). Even today, it is difficult to access accurate information on the spatial distribution of most organisms and their relationships with environmental variables at large scales, despite the availability of many methods for biodiversity planning and conservation (Barlow et al. 2010, Gibson et al. 2011, Margules et al. 2002). There are databases on species richness (Costello et al. 2013), but richness alone has limited use for conservation, because it does not give information on many endemic species or the complementarity of species compositions between regions (Groc et al. 2014, Lamoreux et al. 2005, Sarkar and Margules 2002). Furthermore, most assessments of species–habitat relationships can be compromised if the sampling design of surveys is not spatially clear (Gotelli et al. 2011).

Invertebrate populations can indicate longer-term general ecosystem change, such as restoration of mine sites or climate change (e.g., McGeoch 1998, Bisevac and Majer 1999, Parmesan et al. 1999, York 2000). However, despite recognition that monitoring invertebrates is an important endeavour, widely accepted by national and international funding agencies, monitoring efforts have rarely generated returns commensurate to their investment. All too frequently, insect monitoring lacks both specific goals and a framework detailing how results will be integrated into management decision-making.

One way to overcome these situations is by using good bioindicators taxa, as well as ants, considered particularly useful for monitoring for a number of reasons. Ants are one of the most successful groups of organisms on the planet (Hölldobler and Wilson 1990). To date, approximately 13,360 species of ants (antcat.org), all eusocial, have been described and hundreds of new species are described each year. Ant biologists estimate that the Formicidae family could include no fewer than 20,000 species (Hölldobler and Wilson 1990). All species of ants occupy a nest structure, either temporarily or permanently. These structures can be preexisting cavities or even made their own bodies (e.g. army ants) that do not involve much, if any, excavation or direct modification of the surrounding environments (Guénard 2013). They are abundant and ubiquitous in both intact habitat and disturbed areas (Andersen 1990 Majer 1983, Hoffmann et al. 2000), sampling is relatively easy without requiring enormous expertise (Greenslade and Greenslade 1984, Fisher 1999, Agosti and Alonso 2000, Alonso 2000), and ants have proven sensitive and rapid responders to environmental variables (Campbell and Tanton 1981, Majer 1983 Andersen 1990). Moreover, ants are important functionally at many different trophic levels (Alonso 2000), and they play critical ecological roles in soil turnover and structure (Humphreys 1981, Lobry de Bruyn and Conacher 1994), nutrient cycling (Levieux 1983, Lal 1988), plant protection, seed dispersal, and seed predation (Ashton 1979, Beattie 1985, Christian 2001). Together, these qualities suggest ants merit monitoring for their own sake, as they provide high information content about an ecologically and numerically dominant group (Underwood and Fisher 2006). Despite the increased availability of methods for conservation planning, adequate information about the spatial distribution of biodiversity in large regions, such as the Amazon Basin, remains sparse for most biological groups (Margules et al. 2002).

More than a hundred hydropower dams have already been built in the Amazon Basin and numerous proposals for further dam constructions are under consideration (Latrubesse et al. 2017). Recent scientific reviews have considered the environmental impacts of damming Amazonian rivers (Davidson et al. 2012, Castello and Macedo 2015, Winemiller et al. 2016, Fearnside 2016). The accumulated negative environmental effects of existing dams, not to mention proposed dams (if constructed), have triggered massive hydrophysical and biotic disturbances affecting the Amazon Basin’s floodplains, estuaries and sediment plumes (Latrubesse et al. 2017), as well as causing losses in river connectivity (Anderson et al. 2018).

The Santo Antônio Hydroelectric Power Plant became operational at the beginning of 2016 in the Madeira River in Rondônia State. Prior to the construction of the Santo Antônio Plant, the fauna and flora of the impacted area were surveyed in environmental impact studies commissioned by the Brazilian Institute of Environment (IBAMA). The Santo Antônio Hydroelectric Power Plant and its accompanying reservoir represent the first time in history, as far as we know, in which a monitoring program of invertebrates was conducted to evaluate the influence before and after the total filling of the dam in the Amazon Basin.

Project description

Title: 

Environmental monitoring of ants (Hymenoptera: Formicidae) in the influence areas of the Santo Antônio Hydroelectric Power Plant in the Madeira River in the Brazilian Amazon

Personnel: 

Itanna Oliveira Fernandes, Jorge Luiz Pereira de Souza

Study area description: 

The study was conducted at six sites associated with the Brazilian Biodiversity Research Program (PPBio) — Pedras, Búfalos, Morrinhos, Jaci-Paraná MD, Jaci-Paraná ME and Teotônio modules — within the influence area of the Santo Antônio Hydroelectric Power Plant in the margins of the Madeira River in Rondônia State.

Design description: 

Ants were sampled in permanent plots with five samples per sampling method. We used the RAPELD sampling design, which is based on a system of trails and permanent plots where a diverse range of taxa can be sampled (Costa and Magnusson 2010, Magnusson et al. 2005, Magnusson et al. 2013). The permanent plots are 250 m long and positioned to follow terrain contours to minimize the effects of topographical variation within plots. In each module, transects have a 1 km distance from each other, following the same spatial design.

Sampling methods

Study extent: 

The sites cover a latitudinal gradient of approximately 100 km in the Brazilian Amazon Basin. The sampling design included six sampling modules with six transects (Pedras, Búfalos, Morrinhos, Jaci-Paraná MD, Jaci-Paraná ME and Teotônio modules), each totalling 30 sampling plots. The transects were distributed 0 km, 0.5 km, 1 km, 2 km, 3 km and 4 km from the river's edge, measured perpendicularly from the river margin towards the interior of the forest. For the purpose of impact indicators, the first two campaigns (September 2011 to November 2011) were carried out in the pre-filling period, while campaigns 3 to 10 (February 2012 to November 2014) were carried out after the filling of the hydroelectric reservoir. The campaigns were conducted during the dry and rainy seasons of the Amazon over four years, with intervals of three months between each campaign (whenever possible).

Sampling description: 

Ants were sampled in permanent plots with five samples per sampling method along the transects 0 km, 0.5 km, 1 km, 2 km, 3 km and 4 km (Fig. 1). We used the RAPELD sampling design, which is based on a system of trails and permanent plots where a diverse range of taxa can be sampled (Costa and Magnusson 2010, Magnusson et al. 2005, Magnusson et al. 2013). The permanent plots are 250 m long and positioned to follow terrain contours to minimize the effects of topographical variation within plots. In each site, plots were 1 km apart from each other, following the same spatial design.

Figure 1.  

Transects of each module to collect ants in the influence areas of the Santo Antônio Hydroelectric Power Plant, Porto Velho - RO, with perpendicular distances from the river margin. In details are each transect with a 1 km distance from each other following the same spatial design and each sampling plot in the permanent plots of 250 m length.

The protocol adopted for collection of litter ants is called the ALL protocol (leaflet ants), which is globally standardized on inventories of a litter of ant fauna (Agosti and Alonso 2000). Ground-dwelling ants collected in plots using litter samples were processed in Winkler extractors. Litter-dwelling ants were sampled from a 1 m2 litter in sampling plots located at 50 m intervals along the center line of each transect. Using a Winkler extractor with a 1 cm2 mesh sieve, the leaves were sifted through a wire sieve of 1 cm2 mesh size by shaking the sifter vigorously at least 15 times. The ants were extracted from the sifted litter and placed in a mesh bag inside a cotton bag for 24 hours (Fig. 2). If the sifted leaf litter volume exceeded the capacity of a single mini-Winkler extractor, a second extractor was used. In behavioural response to litter drying, the ants migrate from the suspended sample and fall into a container partially filled with alcohol at the bottom of the bag (Agosti et al. 2000, Bestelmeyer et al. 2000) (Fig. 3). The litter-sampling procedures were undertaken between 8:00 am and 5:00 pm. All ants were first identified to genus using the taxonomic keys provided by Baccaro et al. 2015. Then, they were sorted into species and morphospecies. We used available taxonomic keys or compared with specimens in collections previously identified by experts. A unique identification was given for each morphospecies based on morphological differences from related species. The morphotyping was the same for all collection sites. Vouchers are deposited in the invertebrate collection of the National Institute of Amazonian Research (INPA).

Figure 2.  

Sample from 1 m2 leaf litter of each sampling plot located at 50 m intervals along the transect and mesh sieve used to separate the leaves from the invertebrates.

Figure 3.  

Mini-Winkler extractors composed by a mesh bag filled with sifted sample inside and a cotton bag outside. In response to the drying, the ants migrate from the suspended sample and fall into a container partially filled with alcohol at the bottom of the bag.

Geographic coverage

Description: 

Areas of Santo Antônio Hydroelectric Power-Plant in Rondônia, Brazil.

Coordinates: 

-9.25 and -8.59 Latitude; -64.45 and -63.88 Longitude.

Taxonomic coverage

Description: 

The ants were identified by species and morphospecies, as well as subfamily. Some genera were recorded for the first time in South America (Syscia Roger, 1861) and others in Rondônia State (Nylanderia Emery, 1906; Eurhopalothrix Brown & Kempf, 1961; Lachnomyrmex Wheeler, 1910; Mycetarotes Emery, 1913; Mycetophylax Emery, 1913; Nesomyrmex Wheeler, 1910; and Rhopalothrix Mayr, 1870). We also obtained new records of the following species for Rondônia State: Fulakora degenerata, Tapinoma melanocephalum, Neivamyrmex adnepos, Gnamptogenys acuminata, Gnamptogenys caelata, Gnamptogenys kempfi, Cephalotes pellans, Hylomyrma immanis, Rogeria blanda, Strumigenys deinomastax, Strumigenys infidelis, Wasmannia rochai, Wasmannia scrobifera, Anochetus mayri, Anochetus neglectus, Anochetus targionii and Leptogenys unistimulosa. A total of 46,342 individuals were collected during four years of field collections. A list of all the ants identified in subfamilies (10), genera (68) and species/morphospecies (324). More information about the ecological data and occurence is available in Suppl. materials 1, 2

Taxa included:
Rank Scientific Name Common Name
family Formicidae Latreille, 1809 ant
subfamily Agroecomyrmecinae Carpenter, 1930 ant
genus Tatuidris Brown & Kempf, 1968 ant
species Tatuidris tatusia Brown & Kempf, 1968 ant
subfamily Amblyoponinae Forel, 1893 ant
genus Fulakora Mann, 1919 ant
species Fulakora degenerata (Borgmeier, 1957) ant
genus Prionopelta Mayr, 1866 ant
species Prionopelta sp. 1 ant
subfamily Dolichoderinae Forel, 1878 ant
genus Azteca Forel, 1878 ant
species Azteca cf. chartiffex Emery, 1896 ant
species Azteca sp. 1 ant
species Azteca sp. 2 ant
species Azteca sp. 3 ant
species Azteca sp. 4 ant
species Azteca sp. 5 ant
genus Dolichoderus Lund, 1831 ant
species Dolichoderus bidens (Linnaeus, 1758) ant
species Dolichoderus bispinosus (Olivier, 1792) ant
species Dolichoderus cogitans Forel, 1912 ant
species Dolichoderus debilis Emery, 1890 ant
species Dolichoderus decollatus Smith, 1858 ant
species Dolichoderus imitator Emery, 1894 ant
species Dolichoderus longicollis MacKay, 1993 ant
species Dolichoderus septemspinosus Emery, 1894 ant
species Dolichoderus sp. 1 ant
genus Linepithema Mayr, 1866 ant
species Linepithema sp. 1 ant
genus Tapinoma Foerster, 1850 ant
species Tapinoma melanocephalum (Fabricius, 1793) ant
species Tapinoma sp. 1 ant
subfamily Dorylinae Leach, 1815 ant
genus Cheliomyrmex Mayr, 1870 ant
species Cheliomyrmex megalonyx Wheeler, 1921 ant
genus Eciton Latreille, 1804 ant
species Eciton burchellii (Westwood, 1842) ant
genus Labidus Jurine, 1807 ant
species Labidus praedator (Smith, 1858) ant
species Labidus spininodis (Emery, 1890) ant
genus Neivamyrmex Borgmeier, 1940 ant
species Neivamyrmex adnepos (Wheeler, 1922) ant
species Neivamyrmex angustinodis (Emery, 1888) ant
species Neivamyrmex sp. 3 ant
genus Neocerapachys Borowiec, 2016 ant
species Neocerapachys splendens (Borgmeier, 1957) ant
genus Syscia Roger, 1861 ant
species Syscia augustae (Wheeler, 1902) ant
subfamily Ectatomminae Emery, 1895 ant
genus Ectatomma Smith, 1858 ant
species Ectatomma brunneum Smith, 1858 ant
species Ectatomma edentatum Roger, 1863 ant
species Ectatomma lugens Emery, 1894 ant
genus Gnamptogenys Roger, 1863 ant
species Gnamptogenys acuminata (Emery, 1896) ant
species Gnamptogenys caelata Kempf, 1967 ant
species Gnamptogenys ericae (Forel, 1912) ant
species Gnamptogenys haenschi (Emery, 1902) ant
species Gnamptogenys horni (Santschi, 1929) ant
species Gnamptogenys kempfi Lenko, 1964 ant
species Gnamptogenys moelleri (Forel, 1912) ant
species Gnamptogenys pleurodon (Emery, 1896) ant
species Gnamptogenys relicta (Mann, 1916) ant
species Gnamptogenys sp. 1 ant
species Gnamptogenys sp. 11 ant
species Gnamptogenys sp. 3 ant
species Gnamptogenys sp. 5 ant
species Gnamptogenys tortuolosa (Smith, 1858) ant
genus Typhlomyrmex Mayr, 1862 ant
species Typhlomyrmex sp. 1 ant
subfamily Formicinae Latreille, 1809 ant
genus Acropyga Roger, 1862 ant
species Acropyga sp. 1 ant
genus Brachymyrmex Mayr, 1868 ant
species Brachymyrmex sp. 1 ant
species Brachymyrmex sp. 2 ant
species Brachymyrmex sp. 3 ant
species Brachymyrmex sp. 4 ant
species Brachymyrmex sp. 5 ant
species Brachymyrmex sp. 6 ant
genus Camponotus Mayr, 1861. ant
species Camponotus atriceps (Smith, 1858) ant
species Camponotus blandus (Smith, 1858) ant
species Camponotus cameranoi Emery, 1894 ant
species Camponotus crassus Mayr, 1862 ant
species Camponotus fastigatus Roger, 1863 ant
species Camponotus femoratus (Fabricius, 1804) ant
species Camponotus novogranadensis Mayr, 1870 ant
species Camponotus rapax (Fabricius, 1804) ant
species Camponotus rectangularis Emery, 1890 ant
species Camponotus sericeiventris (Guérin-Méneville, 1838) ant
species Camponotus sp. 5 ant
species Camponotus sp. 6 ant
genus Gigantiops Roger, 1863 ant
species Gigantiops destructor (Fabricius, 1804) ant
genus Nylanderia Emery, 1906 ant
species Nylanderia cf. caeciliae (Forel, 1899) ant
species Nylanderia cf. fulva (Mayr, 1862) ant
species Nylanderia cf. guatemalensis (Forel, 1885) ant
species Nylanderia sp. 3 ant
species Nylanderia sp. 5 ant
subfamily Myrmicinae Lepeletier de Saint-Fargeau, 1835 ant
genus Acromyrmex Mayr, 1865 ant
species Acromyrmex cf. subterraneus (Forel, 1893) ant
genus Allomerus Mayr, 1878 ant
species Allomerus octoarticulatus Mayr, 1878 ant
genus Apterostigma Mayr, 1865 ant
species Apterostigma auriculatum Wheeler, 1925 ant
species Apterostigma gr. pilosum ant
genus Atta Fabricius, 1804 ant
species Atta cephalotes (Linnaeus, 1758) ant
species Atta sexdens (Linnaeus, 1758) ant
genus Basiceros Schulz, 1906 ant
species Basiceros militaris (Weber, 1950) ant
genus Blepharidatta Wheeler, 1915 ant
species Blepharidatta brasiliensis Wheeler, 1915 ant
genus Carebara Westwood, 1840 ant
species Carebara gr. lignata ant
species Carebara sp. 1 ant
species Carebara sp. 2 ant
species Carebara sp. 5 ant
species Carebara urichi (Wheeler, 1922) ant
genus Cephalotes Latreille, 1802 ant
species Cephalotes atratus (Linnaeus, 1758) ant
species Cephalotes minutus (Fabricius, 1804) ant
species Cephalotes pellans De Andrade, 1999 ant
species Cephalotes pusillus (Klug, 1824) ant
species Cephalotes sp. 1 ant
species Cephalotes sp. 2 ant
species Cephalotes sp. 3 ant
genus Crematogaster Lund, 1831 ant
species Crematogaster acuta (Fabricius, 1804) ant
species Crematogaster brasiliensis Mayr, 1878 ant
species Crematogaster carinata Mayr, 1862 ant
species Crematogaster curvispinosa Mayr, 1862 ant
species Crematogaster flavosensitiva Longino, 2003 ant
species Crematogaster limata Smith, 1858 ant
species Crematogaster longispina Emery, 1890 ant
species Crematogaster nigropilosa Mayr, 1870 ant
species Crematogaster sotobosque Longino, 2003 ant
species Crematogaster sp. 2 ant
species Crematogaster stollii Forel, 1885 ant
species Crematogaster tenuicula Forel, 1904 ant
genus Cyphomyrmex Mayr, 1862 ant
species Cyphomyrmex laevigatus Weber, 1938 ant
species Cyphomyrmex minutus Mayr, 1862 ant
species Cyphomyrmex peltatus Kempf, 1966 ant
species Cyphomyrmex rimosus (Spinola, 1851) ant
species Cyphomyrmex cf. salvini Forel, 1899 ant
species Cyphomyrmex sp. 12 ant
species Cyphomyrmex sp. 13 ant
species Cyphomyrmex sp. 3 ant
species Cyphomyrmex sp. 4 ant
genus Eurhopalothrix Brown & Kempf, 1961 ant
species Eurhopalothrix pilulifera Brown & Kempf, 1960 ant
genus Hylomyrma Forel, 1912 ant
species Hylomyrma dentiloba (Santschi, 1931) ant
species Hylomyrma cf. dolichops Kempf, 1973 ant
species Hylomyrma immanis Kempf, 1973 ant
species Hylomyrma longiscapa Kempf, 1961 ant
species Hylomyrma cf. reitteri (Mayr, 1887) ant
species Hylomyrma sp. 2 ant
species Hylomyrma sp. 3 ant
genus Lachnomyrmex Wheeler, 1910 ant
species Lachnomyrmex sp. 1 ant
genus Megalomyrmex Forel, 1885 ant
species Megalomyrmex balzani Emery, 1894 ant
species Megalomyrmex cuatiara Brandão, 1990 ant
species Megalomyrmex drifti Kempf, 1961 ant
species Megalomyrmex goeldii Forel, 1912 ant
species Megalomyrmex leoninus Forel, 1885 ant
species Megalomyrmex sp. 2 ant
species Megalomyrmex sp. 5 ant
species Megalomyrmex sp. 8 ant
species Megalomyrmex wallacei Mann, 1916 ant
genus Monomorium Mayr, 1855 ant
species Monomorium pharaonis (Linnaeus, 1758) ant
genus Mycetarotes Emery, 1913 ant
species Mycetarotes sp. 1 ant
genus Mycetophylax Emery, 1913 ant
species Mycetophylax cf. lectus (Forel, 1911) ant
species Mycetophylax strigatus (Mayr, 1887) ant
genus Mycocepurus Forel, 1893 ant
species Mycocepurus goeldii (Forel, 1893) ant
species Mycocepurus sp. 1 ant
species Mycocepurus sp. 2 ant
species Mycocepurus sp. 3 ant
genus Myrmicocrypta Smith, 1860 ant
species Myrmicocrypta sp. 1 ant
species Myrmicocrypta sp. 2 ant
genus Nesomyrmex Wheeler, 1910 ant
species Nesomyrmex pleuriticus (Kempf, 1959) ant
genus Ochetomyrmex Mayr, 1878 ant
species Ochetomyrmex semipolitus Mayr, 1878 ant
genus Octostruma Forel, 1912 ant
species Octostruma balzani (Emery, 1894) ant
species Octostruma iheringi (Emery, 1888) ant
species Octostruma sp. 1 ant
species Octostruma sp. 2 ant
species Octostruma sp. 3 ant
genus Oxyepoecus Santschi, 1926 ant
species Oxyepoecus ephippiatus Albuquerque & Brandão, 2004 ant
genus Pheidole Westwood, 1839 ant
species Pheidole fracticeps Wilson, 2003 ant
species Pheidole biconstricta Mayr, 1870 ant
species Pheidole flavens Roger, 1863 ant
species Pheidole vorax (Fabricius, 1804) ant
species Pheidole sp. 1 ant
species Pheidole sp. 4 ant
species Pheidole sp. 6 ant
species Pheidole sp. 4 ant
species Pheidole sp. 6 ant
species Pheidole sp. 10 ant
species Pheidole sp. 11 ant
species Pheidole sp. 12 ant
species Pheidole sp. 14 ant
species Pheidole sp. 15 ant
species Pheidole sp. 16 ant
species Pheidole sp. 17 ant
species Pheidole sp. 18 ant
species Pheidole sp. 19 ant
species Pheidole sp. 2 ant
species Pheidole sp. 20 ant
species Pheidole sp. 21 ant
species Pheidole sp. 22 ant
species Pheidole sp. 23 ant
species Pheidole sp. 24 ant
species Pheidole sp. 26 ant
species Pheidole sp. 27 ant
species Pheidole sp. 28 ant
species Pheidole sp. 29 ant
species Pheidole sp. 3 ant
species Pheidole sp. 30 ant
species Pheidole sp. 32 ant
species Pheidole sp. 40 ant
species Pheidole sp. 41 ant
species Pheidole sp. 42 ant
species Pheidole sp. 43 ant
species Pheidole sp. 44 ant
species Pheidole sp. 45 ant
species Pheidole sp. 46 ant
species Pheidole sp. 47 ant
species Pheidole sp. 48 ant
species Pheidole sp. 49 ant
species Pheidole sp. 5 ant
species Pheidole sp. 50 ant
species Pheidole sp. 51 ant
species Pheidole sp. 52 ant
species Pheidole sp. 53 ant
species Pheidole sp. 54 ant
species Pheidole sp. 55 ant
species Pheidole sp. 7 ant
species Pheidole sp. 8 ant
species Pheidole sp. 9 ant
genus Rhopalothrix Mayr, 1870 ant
species Rhopalothrix sp. 1 ant
species Rhopalothrix sp. 2 ant
genus Rogeria Emery, 1894 ant
species Rogeria alzatei Kugler, 1994 ant
species Rogeria cf. belti Mann, 1922 ant
species Rogeria blanda (Smith, 1858) ant
species Rogeria cf. cornuta Kugler, 1994 ant
species Rogeria cf. cuneola Kugler, 1994 ant
species Rogeria leptonana Kugler, 1994 ant
species Rogeria sp. 1 ant
species Rogeria sp. 2 ant
genus Sericomyrmex Mayr, 1865 ant
species Sericomyrmex sp. 1 ant
species Sericomyrmex sp. 2 ant
genus Solenopsis Westwood, 1840 ant
species Solenopsis cf. castor Forel, 1893 ant
species Solenopsis cf. clytemnestra Emery, 1896 ant
species Solenopsis geminata (Fabricius, 1804) ant
species Solenopsis gr. molesta ant
species Solenopsis cf. loretana Santschi, 1936 ant
species Solenopsis cf. saevissima (Smith, 1855) ant
species Solenopsis sp. 3 ant
species Solenopsis sp. 5 ant
species Solenopsis sp. 7 ant
species Solenopsis substituta Santschi, 1925 ant
genus Stegomyrmex Emery, 1912 ant
species Stegomyrmex cf. olindae Feitosa, Brandão & Diniz, 2008 ant
genus Strumigenys Smith, 1860 ant
species Strumigenys appretiata (Borgmeier, 1954) ant
species Strumigenys beebei (Wheeler, 1915) ant
species Strumigenys deinomastax (Bolton, 2000) ant
species Strumigenys denticulata Mayr, 1887 ant
species Strumigenys elongata Roger, 1863 ant
species Strumigenys infidelis Santschi, 1919 ant
species Strumigenys inusitata (Lattke, 1992) ant
species Strumigenys cf. perparva Brown, 1958 ant
species Strumigenys smithii Forel, 1886 ant
species Strumigenys sp. 1 ant
species Strumigenys sp. 10 ant
species Strumigenys sp. 13 ant
species Strumigenys sp. 14 ant
species Strumigenys sp. 15 ant
species Strumigenys sp. 2 ant
species Strumigenys sp. 3 ant
species Strumigenys sp. 4 ant
species Strumigenys sp. 5 ant
species Strumigenys sp. 6 ant
species Strumigenys sp. 7 ant
species Strumigenys sp. 8 ant
species Strumigenys sp. 9 ant
species Strumigenys cf. trinidadensis Wheeler, 1922 ant
species Strumigenys trudifera Kempf & Brown, 1969 ant
species Strumigenys zeteki (Brown, 1959) ant
genus Trachymyrmex Forel, 1893 ant
species Trachymyrmex cf. bugnioni (Forel, 1912) ant
species Trachymyrmex cf. cornetzi (Forel, 1912) ant
species Trachymyrmex cf. diversus Mann, 1916 ant
species Trachymyrmex cf. farinosus (Emery, 1894) ant
species Trachymyrmex cf. mandibularis Weber, 1938 ant
species Trachymyrmex cf. opulentus (Mann, 1922) ant
species Trachymyrmex cf. ruthae Weber, 1937 ant
species Trachymyrmex sp. 10 ant
species Trachymyrmex sp. 3 ant
species Trachymyrmex sp. 7 ant
species Trachymyrmex sp. 8 ant
species Trachymyrmex sp. 9 ant
genus Tranopelta Mayr, 1866 ant
species Tranopelta gilva Mayr, 1866 ant
species Tranopelta sp. 1 ant
genus Wasmannia Forel, 1893 ant
species Wasmannia auropunctata (Roger, 1863) ant
species Wasmannia rochai Forel, 1912 ant
species Wasmannia scrobifera Kempf, 1961 ant
species Wasmannia sp. 1 ant
subfamily Ponerinae Lepeletier de Saint-Fargeau, 1835 ant
genus Anochetus Mayr, 1861 ant
species Anochetus diegensis Forel, 1912 ant
species Anochetus emarginatus (Fabricius, 1804) ant
species Anochetus horridus Kempf, 1964 ant
species Anochetus mayri Emery, 1884 ant
species Anochetus neglectus Emery, 1894 ant
species Anochetus targionii Emery, 1894 ant
genus Dinoponera Roger, 1861 ant
species Dinoponera gigantea (Perty, 1833) ant
genus Hypoponera Santschi, 1938 ant
species Hypoponera sp. 1 ant
species Hypoponera sp. 16 ant
species Hypoponera sp. 2 ant
species Hypoponera sp. 3 ant
species Hypoponera sp. 4 ant
species Hypoponera sp. 5 ant
species Hypoponera sp. 6 ant
species Hypoponera sp. 7 ant
species Hypoponera sp. 8 ant
species Hypoponera sp. 9 ant
genus Leptogenys Roger, 1861 ant
species Leptogenys unistimulosa Roger, 1863 ant
genus Mayaponera Schmidt & Shattuck, 2014 ant
species Mayaponera constricta (Mayr, 1884) ant
genus Neoponera Emery, 1901 ant
species Neoponera apicalis (Latreille, 1802) ant
species Neoponera cavinodis Mann, 1916 ant
species Neoponera commutata (Roger, 1860) ant
species Neoponera laevigata (Smith, 1858) ant
species Neoponera unidentata (Mayr, 1862) ant
species Neoponera venusta Forel, 1912 ant
species Neoponera verenae Forel, 1922 ant
genus Odontomachus Latreille, 1804 ant
species Odontomachus bauri Emery, 1892 ant
species Odontomachus caelatus Brown, 1976 ant
species Odontomachus chelifer (Latreille, 1802) ant
species Odontomachus haematodus (Linnaeus, 1758) ant
species Odontomachus hastatus (Fabricius, 1804) ant
species Odontomachus laticeps Roger, 1861 ant
species Odontomachus meinerti Forel, 1905 ant
species Odontomachus sp. 1 ant
species Odontomachus sp. 2 ant
genus Pachycondyla Smith, 1858 ant
species Pachycondyla crassinoda (Latreille, 1802) ant
species Pachycondyla harpax (Fabricius, 1804) ant
species Pachycondyla impressa (Roger, 1861) ant
species Pachycondyla sp. 1 ant
species Pachycondyla sp. 2 ant
species Pachycondyla sp. 3 ant
species Pachycondyla striata Smith, 1858 ant
genus Pseudoponera Emery, 1900 ant
species Pseudoponera stigma (Fabricius, 1804) ant
genus Rasopone Schmidt & Shattuck, 2014 ant
species Rasopone arhuaca (Forel, 1901) ant
genus Simopelta Mann, 1922 ant
species Simopelta anomma Fernandes et al., 2015 ant
species Simopelta jeckylli (Mann, 1916) ant
genus Thaumatomyrmex Mayr, 1887 ant
species Thaumatomyrmex atrox Weber, 1939 ant
subfamily Proceratiinae Emery, 1895 ant
genus Discothyrea Roger, 1863 ant
species Discothyrea denticulata Weber, 1939 ant
species Discothyrea humilis Weber, 1939 ant
species Discothyrea sexarticulata Borgmeier, 1954 ant
subfamily Pseudomyrmecinae Smith, 1952 ant
genus Pseudomyrmex Lund, 1831 ant
species Pseudomyrmex ita (Forel, 1906) ant
species Pseudomyrmex simplex (Smith, 1877) ant
species Pseudomyrmex sp. 2 ant
species Pseudomyrmex sp. 3 ant
species Pseudomyrmex tenuis (Fabricius, 1804) ant
species Pseudomyrmex termitarius (Smith, 1855) ant

Temporal coverage

Notes: 

2011-09-02 through 2011-09-09, 2011-11-17 through 2012-12-03, 2012-02-28 through 2012-03-12, 2012-05-30 through 2012-06-11, 2013-09-19 through 2013-01-31, 2013-04-18 through 2013-04-28, 2013-06-28 through 2013-07-05, 2013-10-20 through 2013-09-26, 2014-01-17 through 2014-01-27, 2014-11-13 through 2014-11-23

Collection data

Collection name: 
Instituto Nacional de Pesquisas da Amazônia - INPA/ Coleção de Invertebrados/ HYM
Specimen preservation method: 
alcohol, pinned

Usage rights

Use license: 
Other
IP rights notes: 

This work is licensed under a Creative Commons Attribution Non Commercial (CC-BY-NC) 4.0 License.

Data resources

Data package title: 
Environmental monitoring of ants (Hymenoptera: Formicidae) in the influence areas of Santo Antônio Hydroelectric Power-Plant in Rondônia, Brazil.
Number of data sets: 
2
Data set name: 
Environmental monitoring of ants (Hymenoptera: Formicidae) in the influence areas of Santo Antônio Hydroelectric Power-Plant in Rondônia, Brazil.
Character set: 
Event
Data format: 
Darwin Core
Description: 

Biodiversity loss is accelerating rapidly in response to increasing human influence on the Earth’s natural ecosystems. One way to overcome this problem is by focusing on places of human interest and monitoring the changes and impacts on the biodiversity. This study was conducted at six sites within the influence area of the Santo Antônio Hydroelectric Power Plant in the margins of the Madeira River, Rondônia. The sites cover a latitudinal gradient of approximately 100 km in the Brazilian Amazon Basin. The sampling design included six sampling modules with six transects in each module, totaling 30 sampling plots in each module. Transects were distrubuted with 0 km, 0.5 km, 1 km, 2 km, 3 km, and 4 km, measured perpendicularly from the river margin towards the interior of the forest. For sampling the ground-dwelling ants, we used the ALL (ants of the leaf litter) protocol, which is standardized globally in the inventories of ant fauna. For the purpose of impact indicators, the first two campaigns (September 2011 to November 2011) were carried out in the pre-filling period, while campaigns 3 to 10 (Febuary 2012 to November 2014) were carried out during and after the filling of the hydroelectric reservoir. A total of 253 events with a total of 9.165 occurrences were accounted during the monitoring. The ants were distributed in 10 subfamilies, 68 genera, and 324 species/morphospecies (Fig. 4). The impact on ant biodiversity during the periods before and after filling was measured by ecological indicators and by the presence and absence of some species/morphospecies. This is the first study, as far as we know, including taxonomic and ecological treatment to monitor the impact of a hydroelectric power plant on ant fauna.

Figure 4.  

Species occurrence before and after reservoir filling in the Santo Antônio Hydroelectric Power Plant. Dotted lines mark the 95% confidence intervals.

Column label Column description
eventID An identifier for the set of information associated with an Event (something that occurs at a place and time).
eventDate The date-time or interval during which an Event occurred. For occurrences, this is the date-time when the event was recorded.
eventTime The time or interval during which an Event occurred.
habitat A category or description of the habitat in which the Event occurred.
samplingProtocol The name of, reference to, or description of the method or protocol used during an Event.
samplingEffort The amount of effort expended during an Event.
eventRemarks Comments or notes about the Event.
sampleSizeUnit The unit of measurement of the size (time duration, length, area or volume) of a sample in a sampling event.
sampleSizeValue A numeric value for a measurement of the size (time duration, length, area or volume) of a sample in a sampling event.
fieldNotes The text of notes taken in the field about the Event.
continent The name of the continent in which the Location occurs.
country The name of the country or major administrative unit in which the Location occurs
countryCode The standard code for the country in which the Location occurs.
stateProvince The name of the next smaller administrative region than country (state, province, canton, department, region, etc.) in which the Location occurs.
county The full, unabbreviated name of the next smaller administrative region than stateProvince (county, shire, department, etc.) in which the Location occurs.
locality The specific description of the place.
locationRemarks Comments or notes about the Location.
decimalLongitude The geographic longitude (in decimal degrees, using the spatial reference system given in geodeticDatum) of the geographic center of a Location.
decimalLatitude The geographic latitude (in decimal degrees, using the spatial reference system given in geodeticDatum) of the geographic center of a Location.
modified The most recent date-time on which the resource was changed.
datasetName The name identifying the data set from which the record was derived.
type A list of nomenclatural types.
language A language of the resource.
institutionID An identifier for the institution having custody of the material referred to in the record.
institutionCode The acronym in use by the institution having custody of the material referred to in the record.
rightsHolder The organization owning the rights over the resource.
Data set name: 
Environmental monitoring of ants (Hymenoptera: Formicidae) in the influence areas of Santo Antônio Hydroelectric Power-Plant in Rondônia, Brazil.
Character set: 
Occurrence
Column label Column description
ID An identifier for the Identification (an identifier specific to the data set).
type A list of nomenclatural types.
modified The most recent date-time on which the resource was changed.
language A language of the resource.
license A legal document giving official permission to do something with the resource.
rightsHolder The organization owning the material rights over the resource.
institutionID An identifier for the institution having custody of the material referred to in the record.
institutionCode The acronym in use by the institution having custody of the material referred to in the record.
datasetName The name identifying the data set from which the record was derived.
basisOfRecord The specific nature of the data record.
dynamicProperties A list of additional measurements, facts, characteristics, or assertions about the record.
occurrenceID An identifier for the Occurrence.
recordNumber An identifier given to the Occurrence at the time it was recorded.
recordedBy A list of names of people responsible for recording the original Occurrence.
organismQuantity A number for the quantity of organisms.
organismQuantityType The type of quantification system used for the quantity of organisms.
sex The sex of the biological individual(s) represented in the Occurrence.
lifeStage The age class or life stage of the biological individual(s) at the time the Occurrence was recorded.
reproductiveCondition The reproductive condition of the biological individual(s) represented in the Occurrence.
preparations A list of preparations and preservation methods for a specimen.
disposition The current state of a specimen with respect to the collection identified in collectionCode or collectionID.
eventID An identifier for the set of information associated with an Event (something that occurs at a place and time).
identifiedBy A list of names of people who assigned the Taxon to the subject.
scientificName An identifier for the nomenclatural details of a scientific name.
kingdom The full scientific name of the kingdom in which the taxon is classified.
phylum The full scientific name of the phylum or division in which the taxon is classified.
class The full scientific name of the class in which the taxon is classified.
order The full scientific name of the order in which the taxon is classified.
family The full scientific name of the family in which the taxon is classified.
genus The full scientific name of the genus in which the taxon is classified.
specificEpithet The name of the first or species epithet of the scientificName.
taxonRank The taxonomic rank of the most specific name in the scientificName.
vernacularName A common or vernacular name.

Additional information

Fernandes I (2017): Environmental monitoring of ants (Hymenoptera: Formicidae) in the influence areas of Santo Antônio Hydroelectric Power-Plant in Rondônia, Brazil. v1.7. Sistema de Informação sobre a Biodiversidade Brasileira - SiBBr. Dataset/Samplingevent. https://ipt.sibbr.gov.br/sibbr/resource?r=ant_monitoring_in_santo_antonio_hydroelectric_power_plant_rondonia&v=1.7

Acknowledgements

We thank Adriano Henrique Oliveira for his help in sampling ants, as well as Fernando Fernández, Jacques Delabie, John Longino, José Vilhena, and Rodrigo Feitosa for confirming some species identifications for this study. The concessionaires responsible for building and operating the Santo Antônio Hydroelectric Plant, SAE and Probiota Consultoria Ambiental, provided financial and logistical support. J.L.P.S. was supported by the CNPq and FAPEAM post-doctoral scholarship; I.O.F. was supported by the CNPq and CAPES doctoral scholarship. We also thank the INPA for providing the facilities for the sorting and identification of the species. I.O.F. is grateful for all support offered by SiBBr, as well as the assistance offered by Nayara Tartari Soto (SiBBr) with the spreadsheet standardization instructions in DwC. I.O.F. is also grateful for the award offered by GBIF in 2017, the Young Research Award, which enabled the present publication.

Author contributions

All the authors have wrote, edited, built and analyzed the database.

References

Supplementary materials

Suppl. material 1: A total of 253 events of collection in the influence areas of Santo Antônio Hydroelectric Power-Plant. 
Authors:  Itanna Oliveira Fernandes and Jorge Luiz Pereira de Souza
Data type:  metadata (DwC-A) event
Suppl. material 2: A total of 9.165 occurrences in the influence areas of Santo Antônio Hydroelectric Power-Plant. 
Authors:  Itanna Oliveira Fernandes and Jorge Luiz Pereira de Souza
Data type:  metadata (DwC-A) occurences