Biodiversity Data Journal :
Research Article
|
Corresponding author: Ivanka Lazarova (i_asenova_lazarova@abv.bg)
Academic editor: Emilian Stoynov
Received: 28 Jan 2021 | Accepted: 08 Apr 2021 | Published: 20 Apr 2021
© 2021 Ivanka Lazarova, Rusko Petrov, Yana Andonova, Ivaylo Klisurov, Andrew Dixon
This is an open access article distributed under the terms of the Creative Commons Attribution License (CC BY 4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
Citation:
Lazarova I, Petrov R, Andonova Y, Klisurov I, Dixon A (2021) Re-introduction of the Saker Falcon (Falco cherrug) in Bulgaria - preliminary results from the ongoing establishment phase by 2020. Biodiversity Data Journal 9: e63729. https://doi.org/10.3897/BDJ.9.e63729
|
Considered extinct as breeding species in the early 2000s, the Saker Falcon was recovered when the first active nest from the new history of the species in Bulgaria was discovered in 2018, formed of two birds that were re-introduced back in 2015. Currently, there is only one confirmed wild breeding pair in the country - the male from 2015 with a female changed in 2020, released again as a part of the programme, in 2016. This is a report on the preliminary results and analysis of the ongoing establishment phase of the re-introduction of the Saker Falcon (Falco cherrug) in Bulgaria - first ever performed for this species in the country and globally. The period studied is 2015-2020. Following the re-introduction activities started in 2011, the current phase is defined by standardised methodology and a unified approach. Analysed and presented are methods for captive breeding and hacking, the breeding performance of the falcons, the number of released individuals, data from the post-fledging dependence period and a model of population growth.
Saker Falcon, Falco cherrug, captive breeding, hacking, breeding performance, post-fledging dependence period
The Saker Falcon (Falco cherrug) is a species of the Palearctic avifauna inhabiting plains and forest-steppes in the West and semi-desert montane plateaus and cliffs in the East (
At the end of the 19th and beginning of the 20th century, the Saker Falcon was a relatively numerous and widespread species in Bulgaria (
The main reason identified for the dramatic decline of the raptor populations in Bulgaria, including that of the Saker Falcon, was the significant habitat loss due to changes in land use - the transition from grazing to arable crops which led to diminishing of key food sources (
Despite the intensified conservation efforts, the implementation of European legislation for protection of wildlife and regulations for the registration and use of pesticides in Bulgaria since 2007 (
Based on the prior conservation activities, in 2015, the re-introduction programme for the Saker Falcon in Bulgaria was initiated with the objective to upgrade on the previously-conducted work by using a standardised and unified approach of releasing a set number of birds over a certain period of time utilising the hacking method. This establishment phase referred to the period in which the population is susceptible to threats that will disappear if the population survives this stage (
Creating a captive-breeding group of Saker Falcons of known European origin from the Pannonian population was chosen over translocation of wild-sourced birds as the more practical option for obtaining birds to be released in the wild in Bulgaria (
Four аdaptation аviaries (or hacks), have been constructed and installed on oak trees at a height of 7-8.5 m and 0.7-2.8 km distant from each other, for the purposes of re-introduction in the territory chosen for release in Stara Zagora Province. The hack cages were octagonal steel structures, 150 cm in diameter and with a height of 90 cm. Five of the eight walls were of steel mesh, as was the roof. A hinge mechanism allowed the top part of the cage to be raised in order to open the hack. The cages were based on a model used for a Peregrine Falcon restoration project in Poland (
This construction was suitable to be placed on old-growth trees; however, it is too heavy for installation on younger ones. As old-growth trees are rare in the area of release, the hack cages should be modified in case they need to be moved or if more are to be installed. The rails supporting the bottom could be cut out and additional hooks placed for mounting.
The hacks were equipped with surveillance cameras looking in and down on the cage. Up to 90 m away, feeding tables were set up in direct view of each aviary. Following a veterinary health check, during which each Saker Falcon was equipped with a microchip and a set of identification rings, the birds were transferred from the breeding facility to the hack sites at an age coinciding with their ability to fledge - around 30 days-old. They were placed in the cages in groups of three to five and kept within them for the first 10 days to avoid risk of predation. During that period, they were monitored via the internal surveillance cameras.
The falcons were fed twice or, in particularly hot summers, three times a day via a pulley mechanism in order to minimise human association with the feeding process. In addition, in the first ten days, food was placed three times - every three days, on the feeding table so the hacked birds would see it from the cage. From the opening of the hack, food was placed daily on the feeding table as well as in the hack. For the first 10 days from opening, it was placed twice a day in the hack and, only in the mornings, larger and more noticeable pieces were put on the table; for the second 10 days - twice a day on the table and once in the hack where more unappealing food was put to encourage the young birds to spend more time outside the hack cage. Six days after that, three times or every two days and for another six in which two times (every three days) more unappetising food was placed in the hack and regular provisions were provided twice a day every day at the feeding table. The cage’s top was closed 32 days after opening the hack and food was set from then on twice a day at the feeding table only. This was done until the end of July. In August, the feeding was dependent on whether Saker Falcons were still present in the release area - on average, once a day for 20 days, food was placed on the feeding table in the afternoons after 5.00 pm.
During the daily observations, the presence of each individual Saker Falcon was noted, its behaviour, attendance to the hack and feeding table and hunting attempts closely monitored as well as noting fledging date and date of individual birds’ last sighting in the release area. The field activities were conducted for four months each season. In 2015 and 2016, full-day monitoring was conducted for 54 and 74 days, respectively, from the opening of the hack with the first group of Saker Falcons. For the period 2017-2019, monitoring was not done full-time. In 2020, systematic full-day observations were again conducted for 74 days after the opening of the first hack cage.
The data received was processed with IBM SPSS Statistics (SPSS-Inc. 2019, SPSS Reference Guide 26 SPSS, Chicago, USA) using descriptive statistics with frequency distribution tables. Correlation analysis (Pearson Correlation Coefficient) and Student t-test (t-test for independent samples, Levene's test p < 0.05) were used. The results afterwards were presented on diagrams (Excel, Windows 10).
The model was created using RAMAS GIS 4.0, RAMAS Metapop 4.0 programme (
For the purpose of modelling, three life stages of the Saker Falcons were determined: juvenile (< 1 year old), sub-adult (2 years old) and adult (> 3 years old). We accepted the first breeding to be at 3 years of age, the adult breeding rate to be 90%, the nest productivity - 2.6 juveniles per breeding pair and that the population would have an emigration rate of 10%. We have not built in any sex differences in the breeding age for the preliminary model. In 2020, the breeding output did not meet the minimum threshold for the restoration programme; for this reason, the modelling was re-adjusted to accommodate the next four years of the establishment phase, which would be considered complete when the planned threshold of a minimum of six Saker Falcon pairs breeding in the wild in Bulgaria is reached. The model was based on the planned release of 100 Saker Falcons in five consecutive years. The simulations were initialised with no adult individuals, only juveniles were introduced. The minimum number of released juvenile birds per year was planned as follows: in 2020 - 12 birds, 2021 - 18, 2022 - 20, 2023 - 25, 2024 - 25.
During 2015 and 2020, 70% (5-9) of the 9 to 11 breeding pairs maintained in the captivity have laid eggs. The average clutch size and brood size was 5.08 ± 0.22 eggs and 2.33 ± 0.46 nestlings. The ratio of couples raising at least one chick compared to the total number of breeding pairs for the study period was 0.69 ± 0.11. The average number of fledglings coincided with the breeding success (number of fledglings related to the number of pairs registered to have laid eggs). The number of fledged birds related to the number of pairs raising at least one chick was 2.77 ± 0.31 (Table
Mean ± Std. Err. |
Range (Min-Max) |
|
Clutch size | 5.08 ± 0.22 | 1.50 (4.60-6.10) |
Brood size | 2.33 ± 0.46 | 3.00 (1.20-4.20) |
Success Rate | 0.69 ± 0.11 | 0.60 (0.40-1.00) |
Productivity | 1.95 ± 0.45 | 2.80 (1.00-3.80) |
Breeding success | 1.95 ± 0.45 | 2.80 (1.00-3.80) |
Fledging success | 2.77 ± 0.31 | 1.80 (2.00-3.80) |
For the period 2015-2020, 80 Saker Falcons were released in total via the hacking method from four aviaries near the town of Stara Zagora. Female birds represented 27 of them, the rest (53) were male. Sixteen individuals have been sourced from elsewhere, the rest (64) have been bred and hatched at the WRBC (Table
Number (n) of released Saker Falcons by hacking for the period 2015-2020.
Year | ♂/n | ♀/n | WRBC/n | Imported/n | Total Released/n |
2015 | 8 | 11 | 19 | 0 | 19 |
2016 | 8 | 11 | 7 | 12 | 19 |
2017 | 6 | 10 | 14 | 2 | 16 |
2018 | 0 | 6 | 6 | 0 | 6 |
2019 | 1 | 7 | 8 | 0 | 8 |
2020 | 4 | 8 | 10 | 2 | 12 |
Total/n | 27 | 53 | 64 | 16 | 80 |
The compiled data of the 80 released Saker Falcons showed the birds were hacked, on average, at 32 days of age, with no significant difference between male and female birds (31.74 ± 0.84 and 32.34 ± 0.40, P = 0.47). Greater variation was found in the average weight prior to hacking - for males, it was 820.37 ± 9.28 g, while for females, it was 1026.89 ± 14.14 g. (P = 0.00). Similarly, regarding sex, there was a difference found in the average length of the tarsus - 28.78 ± 0.46 mm for males vs. 31.06 ± 0.35 mm for females respectively (P = 0.00). The average age at which Saker Falcons were when the cages were opened, was estimated at 42 days (41.30 ± 0.86 for males and 42.21 ± 0.47 for females (P = 0.00). Male birds were recorded to be 48.26 ± 1.69 days-old on average when first observed to be fledged from the adaptation aviary and females - 50.17 ± 1.04 days-old (P = 0.32). The maximum age at which Saker Falcons have been positively identified to do so (at 76 days-old) was due to irregular monitoring at the time. On average, the birds were observed to stay in the hack area until 82 days-old (males at 82.00 ± 3.09 and females until 81.53 ± 1.96, P = 0.89) (Table
Sex | Age Hacked/ days | Weight Hacked/ g | Tarsus/mm | Age Hack opened |
Post-fledging dependence period |
||
Age First sighting after fledging | Age Last sighting | ||||||
♂ |
Mean ± SE. | 31.74 ± 0.84 | 820.37 ± 9.28 | 28.78 ± 0.46 | 41.30 ± 0.86 | 48.26 ± 1.69 | 82.00 ± 3.09 |
Min.-Max. | 27.00-49.00 | 700.00-890.00 | 22.00-35.00 | 37.00-59.00 | 38.00-76.00 | 59.00-120.00 | |
♀ |
Mean ± SE | 32.34 ± 0.40 | 1026.89 ± 14.14 | 31.06 ± 0.35 | 42.21 ± 0.47 | 50.17 ± 1.04 | 81.53 ± 1.96 |
Min.-Max. | 27.00-40.00 | 880.00-1235.00 | 21.00-37.00 | 36.00-51.00 | 42.00-76.00 | 43.00-110.00 | |
Total |
N | 80 | 80 | 80 | 80 | 80 | 70 |
t-value | -0.73 | -9.87 | -3.85 | -1.01 | -1.01 | 0.13 | |
p | 0.47 | 0 | 0 | 0.32 | 0.32 | 0.89 |
Regarding the retention in the release area, observation records in 2018 confirmed the presence of at least one pair currently breeding in the wild in the country, in 2018 and 2019, formed by the two released Saker Falcons in 2015. From 2020, it was composed of the same male with a changed female of the birds released in 2016 as part of the re-introduction programme. The three Saker Falcons of the breeding pair have been systematically observed in the hack area, until dispersing at 75, 77 and 87-days-old. Retention in the proximity of 100 km to the release site was confirmed also in early 2021 for a Saker Falcon released in 2020, as for other Sakers in previous years (2018-2020). All of the returned birds that were identified were ones which had spent a significant amount of time in the release site.
Captive breeding and consecutive releasing in the wild with the aim of species preservation and restoration has proven as a successful method since the mid-20th century (
A re-introduction programme for the Saker Falcon was initiated in 2015 in Bulgaria. For the studied period, the average clutch size was 5.08 ± 0.22 (from 5-9 breeding pairs), which appeared to be higher than the average for wild Saker Falcons in Ukraine - 4 (
Data from morphometrical and mass measurements of the hacked birds showed that the mass of the males was equivalent to 79% of the mass of the females, which is expected by sexual dimorphism of the species. These results are consistent with the findings of
The 80 Saker Falcons released over 2015-2020 in Bulgaria were recorded to have fledged from the hack sites on average between 40-50 days-old, an age comparable to that of wild birds from natural nests (
The significance of the PFDP was underlined by reports relating juvenile survival to the length of time spent in the release area after fledging, considering the survival prospects of satellite-tagged Sakers to be “minimal” for juveniles that left their natal area very early (
Final outputs of the Saker Falcon re-introduction programme appeared to be dependent both on the number of released individuals and their survival rate after fledging. Due to the lower breeding output and unachieved minimum of released birds in 2020, as the programme was restarted, the population model was adjusted in terms of the number of Saker Falcons to be released each season. In this regard, in order to calculate population growth in our study, we assumed juvenile survival rates of 35%, sub-adult survival rates of 60% and adult survival rates of 80%. For comparison,
The positive experience of two Saker Falcons released beforehand in 2015 near Stara Zagora within the re-introduction programme, which were, in 2018 and 2019, confirmed to be effectively breeding in the wild, proved that hacking could result in Sakers surviving in the wild until maturity and that they could return to the region of their release and breed successfully. This was reinforced by the change of the female bird in 2020 with a Saker Falcon released in 2016 and of a successful breeding season for the new pair. Along with sightings of previously released birds in the region of re-introduction between 2018-2020, a sighting was reported in early 2021 of a Saker Falcon newly-released in 2020, recorded 100 km from the release site. All the returned birds have spent a significant amount of time in the hack area prior to dispersal. These results indicated the release of captive-bred Saker Falcons via hacking appeared to be an appropriate option for restoring the Saker Falcons in a part of their former breeding range. The data obtained, so far, point to the importance of hacksite management which, together with an improved breeding output, can contribute to more quickly achieving the objectives of the re-introduction project. In 2020, the programme was restarted on the basis of planned releases of 100 Saker Falcons in total over five years, to meet the minimum threshold for a modelled population. The establishment phase would be considered complete when six breeding pairs of Saker Falcons are registered in the wild in Bulgaria. The expected result of the programme is to successfully establish a self-sustaining population of the species in Bulgaria. Future benefits are linked with expectations that this founding population will attract further breeding recruits from neighbouring regions in Central and Eastern Europe, thus facilitating gene flow amongst existing fragmented populations. Furthermore, the re-establishment of this iconic species has profound implications for conservation in Bulgaria in terms of public awareness of species conservation and as an indicator of wider environmental issues.
The authors want to express their gratitude, for their contribution and support - to Darren Weeks, Yordanka Vasileva, Andreana Dicheva, Yanko Yankov, Darina Eneva, Ivan Kaishev, David Izquierdo, Georgi Vasilev, Natasha Peters, Georgi Zagorov, Simeon Marin, Dimitar Todorov, Donal Hogan, Gradimir Gradev, Tenko Tenev, Holly Cale (ICBP), Jemima Parry-Jones (ICBP) and the Institute of Biodiversity and Ecosystem Research of the Bulgarian Academy of Sciences.
The Saker Falcon Re-introduction in Bulgaria Project is funded by the Mohammed bin Zayed Raptor Conservation Fund. Support funding is provided by Armeec JSC. Previous funding was provided by the Environmental Agency of Abu Dhabi (EAD), the Mohamed bin Zayed Species Conservation Fund and People’s Trust for Endangered Species (PTES). The project is carried out by the Wildlife Rehabilitation and Breeding Centre part of Green Balkans - Stara Zagora NGO.