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Abstract

Background

Parallel data manipulation using R has previously been addressed by members of the R
community, however most of these studies produce ad hoc solutions that are not readily
available to the average R user. Our targeted users, ranging from the expert ecologist/
microbiologists to computational biologists, often experience difficulties in finding optimal
ways to exploit  the full  capacity of their computational resources. In addition, improving
performance of  commonly used R scripts  becomes increasingly  difficult  especially  with
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large  datasets.  Furthermore,  the  implementations  described  here  can  be  of  significant
interest  to  expert  bioinformaticians  or  R  developers.  Therefore,  our  goals  can  be
summarized as: (i) description of a complete methodology for the analysis of large datasets
by  combining  capabilities  of  diverse  R  packages,  (ii)  presentation  of  their  application
through a virtual  R laboratory (RvLab) that  makes execution of  complex functions and
visualization of results easy and readily available to the end-user.

New information

In this paper, the novelty stems from implementations of parallel methodologies which rely
on the processing of data on different levels of abstraction and the availability of these
processes through an integrated portal. Parallel implementation R packages, such as the
pbdMPI (Programming with Big Data – Interface to MPI) package, are used to implement
Single Program Multiple Data (SPMD) parallelization on primitive mathematical operations,
allowing for interplay with functions of the vegan package. The dplyr and RPostgreSQL R
packages are further integrated offering connections to dataframe like objects (databases)
as  secondary  storage  solutions  whenever  memory  demands  exceed  available  RAM
resources.

The RvLab is running on a PC cluster, using version 3.1.2 (2014-10-31) on a x86_64-pc-
linux-gnu  (64-bit)  platform,  and  offers  an  intuitive  virtual  environmet  interface  enabling
users to perform analysis of  ecological  and microbial  communities based on optimized
vegan functions.

A  beta  version  of  the  RvLab  is  available  after  registration  at:  https://
portal.lifewatchgreece.eu/
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Introduction

The advent of interdisciplinary science fields like computational ecology/biodiversity and
metagenomics (Oulas et al. 2015, Canhos et al. 2004, Petrovskii and Petrovskaya 2012,
Soberon  and  Peterson  2004)  is  contributing  to  the  constant  escalation  of  complex
computational pipelines, which, in turn, requires increased computational resources and
capacities. The size and speed of the computational analyses are limited by the source
code  which  delineates  the  accessible  functions  and  libraries.  The  ever  growing  in
popularity and usability R statistical programming language (R Core Team 2013) provides a
wide array of  built-in  functions,  libraries  and packages that  are  of  valuable  use to  the
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environmental ecologist, microbiologist as well as many other academic disciplines. The
use of  these functions is  often sub-optimal  with respect  to data size manipulation and
speed-up. However, the average biologist is often not inclined to become acquainted with
the necessary programming and information technology (IT) skills, required to efficiently
transform  conventional  available  functions  into  computationally  optimized  methods.
Therefore, they are deprived from speed-up and improved memory manipulation during
their computational and mathematical operations.

On  the  other  hand,  computer  scientists  are  well-aware  of  tools,  methods  and
implementations that can provide significant boosts in speed for computational calculations
and further solve issues like memory exhaustion, a problem often faced in analyses using
“big” data.

In  this  work,  we  have  brought  together  expert  scientists  from  the  disciplines  of
environmental ecology and microbiology with IT and mathematical experts in order to focus
on optimization methods for  widely used statistical  functions,  effective in environmental
ecology today. More specifically, we focus on the vegan (Community Ecology) package
(Oksanen et  al.  2015) available in R and the ways to optimise common functions with
respect to both speed-up and memory usability. This work comes together under a virtual
laboratory (vLab) which is available through the LifeWatchGreece portal.

Similar efforts, as in Buttigieg and Ramette (2014), have resulted in the creation of online
R platforms, such as the "Multivariate AnalysiS Applications for Microbial Ecology (MASA 
ME)" suite; it seems that there is a need for the creation of such platforms as more and
more scientists are leaning towards the use of open source software for their analyses.
However,  although  MASAME  makes  use  of  R  and  some  of  the  vegan functions  are
available for the users, there is no extra effort on their optimization and parallelization.

Our main incentive is to make optimization tasks easily available to the average user who
has  no  expertise  and  prior  training  in  this  area  of  research.  This  way,  environmental
ecologists  can  make  use  of  optimized  functions,  implemented  by  IT  experts  and
mathematicians, through a freely available, user-friendly interface, without having to spend
time analysing parallelization complexity and deciding on which function to use and how to
do so. In addition, multiple non-parallelized functions are also available for users with no
programming experience via  the RvLab interface.  Source code and methodologies are
accessible to users with programming and IT knowledge.

We describe the optimization methods and their implementation in detail and highlight the
advantages of using our optimized R functions, with respect to both computational time
speed-up, as well as improved memory manipulation in order to avoid memory exhaustion
issues. The analyses we focus on can be computationally demanding primarily due to large
matrix operations, increasing permutations in likelihood function computations and iterative
basic mathematical operations.
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Motivation and State-of-the-Art

Despite  its  popularity  among  the  research  community,  R  still  seems  inflexible  in  fully
exploiting the latest developments in computer software and hardware. As there are no
inherent constructs for parallelizing computations, it is up to the developer to adapt the R
code, in order to take advantage of the resources available by multi-core CPUs. Moreover,
when the data computed are too big to fit in main memory, no simple solution is considered
standard.  Packages that  offer workarounds are indeed available,  but  their  use by non-
expert  R  users  is  rarely  considered  straightforward.  These  are  real  issues  faced  by
researchers,  whose  needs  for  processing  collected  data  continually  increase  both  in
computational demand and in size.

Working with large datasets in R can be cumbersome because of the need to keep objects
in physical memory. The need to keep whole objects in memory becomes a challenging
task to those who might want to work interactively with large datasets. Several packages
attempt to overcome problems when accessing big volumes of data. The bigmem package
(Kane et al. 2013) is designed to handle massive data sets that are not larger than the
available RAM. It overcomes the restriction of R using matrices or data frames that, even
though they fit in RAM, no space is available to handle the overhead of working with them.
Furthermore,  it  extends and augments the R statistical  programming environment,  thus
enabling more powerful parallel analyses and data mining of massive data sets, although it
is restricted to the available RAM size (even though some options for connecting its objects
with file-backed mappings can be implemented).

The Programming with Big Data in R (pbdR) project (Ostrouchov et al.  2012) seeks to
elevate  the  R  language  to  supercomputers.  Most  of  its  functionalities  revolve  around
parallelization features,  yet  the pbdDMAT package (Schmidt  et  al.  2012) of  the project
offers  an  implicitly  parallel  system  for  doing  distributed  matrix  computation  in  R. The
bigmem and pbdDMAT packages are useful solutions, but do not always provide the level
of flexibility needed in handling complex constructs because of the fact that they rely on
their own constructs to handle big data.

Nowadays, the dplyr package (Wickham and Francois 2015) has become very popular for
data  manipulation,  providing  a  repertoire  of  functions  for  accessing  data  stored  in
databases. Coupled with packages dedicated for specific database implementations, such
as RPostgreSQL (Conway et al. 2013), it offers the possibility to write R scripts that access
the underlying databases from within the R environment,  but  with the look and feel  of
relational  data  manipulation.  This  approach  is  more  attractive  for  a  large  scale
implementation, such as the one designed for the LifeWatchGreece portal.

As far as parallelization is concerned, a multitude of packages have emerged, such as
snow (Tierney et al. 2015), multicore (Urbanek 2009) and parallel. Due to the complexity of
tasks required in vegan, as well as in other packages for the LifeWatchGreece project, we
found the existing approaches for parallel computing rather restrictive. Our decision in this
project was to go into the low-level whenever necessary and implement custom parallel
solutions which can provide more flexibility.  To assist us in this process, packages that
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provide interfaces to MPI (Message-Passing Interface) for R are proved really valuable.
Rmpi (Yu 2002) is one of the most popular solutions that can port low level MPI functions
into R, abstracting the complexities of writing C or Fortran code. The more recent pbdR
project (Ostrouchov et al. 2012) also offers such a wrapper through the pbdMPI library,
which is intended for Single Program Multiple Data (SPMD) programming with big data.

After considering the benefits offered, we decided to adopt pbdMPI (Chen et al. 2012, as
our primary package for parallelization within LifeWatchGreece, and couple it with other
solutions for parallelization or optimization of code, whenever necessary.

Summarizing,  the  work  conducted  in  the  context  of  the  project  aims  at  applying
optimization techniques for data on two different levels of abstraction described in detail in
the project description. This is done by:

1)  Using  the  pbdMPI package  to  implement  Single  Program  Multiple  Data  (SPMD)
parallelization on primitive mathematical operations, allowing for interplay with functions of
the vegan package.

2)  Using  the  dplyr and  RPostgreSQL packages  in  order  to  offer  secondary  storage
solutions  whenever  memory  demands  exceed  available  RAM  resources  (memory
exhaustion)

Option (1) may be employed in conjugation with option (2) to address memory exhaustion
issues. While, for speed-up and job segmentation issues we only use option (1).

We finally evaluate our optimization results using two test case scenarios with real data
obtained from environmental ecologists in the standard file formats, commonly utilized in
the field. We also demonstrate results and visualization outcomes obtained through the
graphical user interface available through the LifeWatchGreece portal.

Project description

Design description: The general architecture design to approach the development of the
LifeWatchGreece RvLab is presented in Fig. 1. At the bottom layer, a dedicated multi-core
cluster has been installed, providing the necessary resources for supporting the execution
of demanding computational tasks (jobs) submitted by RvLab users. On top of that, all jobs
are inserted into a priority queue and forwarded to the cluster within the Linux Operating
System.

Each R script  communicates with the cluster using the MPI message-passing protocol.
RvLab  abstracts  the  implementation  details  from  the  end-user:  each  vegan function
implemented  for  execution  within  the  RvLab  takes  advantage  of  the  appropriate  R
packages for parallel  computing and big data manipulation, which are preconfigured to
adapt to the workload of the cluster at each particular moment.
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An intuitive User Interface provides all necessary facilities for end users to perform ordinary
tasks, such as to upload their datasets, to choose and parameterize the desirable vegan
functions available by the RvLab, to monitor the progress of execution of their submitted
jobs, and to visualize and download the produced results.

Optimization Analysis Process 

The core functionalities of the RvLab lie in the middle layers of this architecture, namely in
the  way  the  vegan functions  become  appropriately  adapted  for  execution  within  the
LifeWatchGreece  Cluster  Infrastructure.  We  next  describe  first  the  general  approach
followed  for  each  individual  vegan function,  in  order  to  determine  the  optimization
techniques that should be followed and then we explain in detail our generic methodology
for optimizing functions.

Optimization  methods  focus  on  three  major  processes:  a)  Parallelization,  b)  Data
manipulation through primary and secondary storage and c) Load balancing.

We focus on the parallelization of functions at two levels of abstraction: Level 1 (low level) -
Primitive operations like outer product, matrix multiplication, etc, available in the core R
package, are addressed at  low level  using basic mathematical  operations,  due to their
frequent usage. Level 2 (high level) - More, general R functions, like those in vegan CRAN
package are addressed at the higher level of abstraction, namely job segmentation. Both
levels can be combined to reach optimal solutions and achieve significant speed-up. Often
the output of a certain function can be utilized as the input of another functions. For such
sucessive  function  executions,  level  2  parallelization  allows  for  efficent  data  portability
between functions. (eg. taxa2dist -> taxondive).

Some issues which we needed to address for this work entailed the general nature of R as
a programing language. R is a single-threaded language, so we had to find alternative

 
Figure 1. 

The general architecture design to approach the development of the LifeWatchGreece RvLab.
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methods to overcome memory barriers and perform big data segmentation,  as well  as
perform task segmentation using the multi-core system available by a cluster computing
environment.

The above issues were addressed primarily using MPI. MPI is a powerful, low-level tool
that  can  provide  numerous  solutions  for  R  parallelization.  It  provides  a  framework  for
managing communications, while the general process for utilizing MPI in SPMD (Single
Program  Multiple  Data)  can  be  summarized  with  the  following  steps:  i) Initialize
communicator(s),  ii)  Data  input  to  individual  processes,  iii)  Perform  computations,  iv)
Communicate results, v) Shut down the communicator(s).

In  order  to  perform  MPI  manipulation  for  RvLab  we  adopted  pbdMPI as  our  primary
package and couple  it  with  other  parallelization  solutions  or  code optimization.  MPI  is
simplified through pbdMPI,  whereby a  single  program is  written  and later  spawned by
mpirun. pbdMPI allows for spawning and broadcasting from within R under a simplified API
for all functions, permitting very fast communication.

Moreover, we utilized pbdR for big memory manipulations and in conjunction with pbdMPI
we achieve low-level  and custom parallel  solutions  and also allows us to  benefit  from
Single Program Multiple Data.

Performing profiling techniques 

In order to profile for bottlenecks (parts of the algorithm where large amounts of runtime
are consumed and greater size of memory is allocated) we combine a variety of functions
from several  profiling  packages,  like  profr (Wickham 2014)  and  proftools (Tierney  and
Jarjour 2016). Functions like Rprof() (for memory profiling) trace parts of the code with
greater memory allocations while proftable() and lineprof(), offer profiling of R code on a
line-by-line basis.

Optimization steps and approach 

Before starting our parallelization methodology, we perform some preliminary tasks in order
to  distribute  efficiently  our  effort.  The  first  task  concerns  the  application  of  profiling
techniques so as to detect chunks of the algorithm according to memory consumption and
computational time. Thereafter, we classify these chunks from most to least demanding.
The second task  requires  categorization  of  these chunks according to  their  repetitions
inside  the  code.  Functions  which  contain  repeated  parts,  like  often  usage  of  primitive
functions,  must  be  treated  differently  than  functions  with  non-repeated  occurances.  A
choice of  low (level  1)  or  high (level  2)  level  optimization is  then taken depending on
whether the function contains repeated occurrences of primitive function operations or non-
repeated occurrences, where parallelization of the functions is performed.

The next checkpoint in the workflow depends on whether the size of the data generated by
the function operations exceeds the available system RAM capacity. If the data surpasses
the available RAM, we use RPostgreSQL and dplyr packages. These packages allow us to
interact with external database, like PostgreSQL, in order to overcome the memory barrier.
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Thereafter, we combine the operation with the pbdMPI package to parallelize our function.
After the expiration of the above technique we generate and retrieve the desired optimized
results.  In  cases  where  available  RAM  is  sufficient,  we  limit  our  process  to  pbdMPI
package usage in order to decrease computational time and to optimize our results.

Finally, we reconstruct our results in the appropriate format and we store them form further
use or we printed on the screen. The overall pipeline for the optimization process can be
seen in Fig. 2.

Example  1  Low  level  optimization  (level  1).  One  characteristic  example  is  the
parallelization of functions, such as the outer product (Suppl. material 1). The methodology
followed is shown Fig.  3,  aiming at  allogating smaller  portions of  the work on different
processors  (Suppl.  material  2).  A  similar  methodology  is  applied  on  other  recurrent
primitive functions.  The true optimization power of  this example code becomes evident
upon a high number of repeated executions of this code in our algorithms.

 
Figure 2. 

The overall pipeline for the optimization process.
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Example  2  High  level  optimization  (level  2). In  the  example  shown  in  Fig.  4 we
demonstrate the methodology we apply in a general function. As we seek to enhance its
performance  we  distribute  our  dataset  and  we  run  our  code  simultaneously  for  this
distributed dataset.

Generic Methodology 

Our methodology for optimization aims to combine the solutions on the parallelization level
with  those  on  the  database  storage  aspect  in  a  harmonious  manner, and  not  just  to
integrate  them  monolithically.  More  importantly,  our  methodology  needs  to  be  flexible

 

 

Figure 3. 

Example  of  Low  level  optimization  (level  1)  applied  to  multiple  and  recurrent  primitive
functions.

Figure 4. 

Example of High level optimization (level 2) applied in general functions.
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enough to be adapted to the different requirements of each function. For example, it  is
expected that certain functions perform computationally intensive tasks on small datasets,
while others iterate simple operations on big datasets or produce bi-products during their
computation that are difficult to maintain in the main memory.

Fig.  5  presents  schematically  the  general  rationale  of  our  methodology.  Whenever
computations are too demanding and/or too big to fit  in main memory (RAM), they are
broken down into chunks that can fit in memory. At the time of execution of a job by the
cluster,  each  available  processor  is  assigned  to  perform  a  part  of  the  necessary
computations.  The  outcome  is  then  stored  temporally  in  corresponding  tables  in  the
PostgreSQL database. The next chunk is brought into memory to repeat the process. If the
data in the database is the final outcome of the function, as is the case with the taxa2dist
function, the tables can be reconstructed and stored in a Comma Separated Values (.csv)
file format. If, on the other hand, these tables are only some bi-product generated during
computation, they are retrieved part by part and aggregated to carry on with the execution.

It is important to note that the type of computations performed in each processor is not
necessarily restricted to primitive operations, such as matrix multiplication, outer product
etc.  These  operations  have  of  course  been  redesigned  to  take  advantage  of  the
decomposition of data to the processors available. Still, a big asset of the RvLab offered
functionalities is that they provide optimizations at higher levels of abstraction, such as in
combining sequences of commonly executed vegan functions into a single one.

For  instance,  a commonly executed workflow performed by biologists  is  to  provide the
output  of  the  taxa2dist function,  which  is  usually  a big  square  matrix,  as  input  to  the
taxondive function, which generates results of a small size. Both of these functions perform
executions of similar operations on the same data multiple times; our enhanced function
combines these two functions with a more efficient parallel algorithm that not only achieves

 
Figure 5. 

Methodology adopted for operations with memory leakage.
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significantly  quicker  execution  times,  as  evidenced  in  a  following  section,  but  also
overcomes the memory barriers that exist when the initial datasets are beyond a certain
limit. In fact, since the output of taxa2dist does not need to be stored, our function can be
used with input data of any size.

Supported optimized RvLab functions 

A non-exhaustive list of supported RvLab functions is presented below:

· taxa2dist parallel, taxa2dist (local storage), taxa2dist > taxondive - The taxa2dist function
returns  a  distance matrix  from a  classification  aggregation  file  which  acts  as  input  for
taxondive. The combination of these functions computes indices of taxonomic diversity and
distinctness, which are averaged taxonomic distances among species or individuals in the
community (Clarke and Warwick 1998, Clarke and Warwick 1999).

· anosim - Analysis of similarities (ANOSIM) provides a way to test statistically whether
there is a significant difference between two or more groups of sampling units. It is often
used as a hypothesis test after multidimensional scaling analysis.

· adonis - Analysis of variance using distance matrices in order to partition them among
sources  of  variation  and  fitting  linear  models  (e.g.  factors,  polynomial  regression)  to
distance matrices. It uses a permutation test with pseudo-F ratios and it is the equivalent of
PERMANOVA analysis (Anderson 2001).

· mantel - Function mantel calculates the Mantel statistic as a matrix correlation between
two dissimilarity matrices, and function mantel.partial computes the partial Mantel statistic
as the partial matrix correlation between three dissimilarity matrices. The significance of
the statistic is evaluated by permuting rows and columns of the first dissimilarity matrix.

· simper - Returns a list of variables (e.g. species) that contribute to the average similarity
within and average dissimilarity between groups of samples, using Bray-Curtis index or
Euclidean distances.

·  bioenv -  Returns  the  best  subset  of  environmental  variables,  so  that  the  Euclidean
distances  of  scaled  environmental  variables  have  the  maximum (rank)  correlation  with
community dissimilarities.

The rate statistics are computed using the formula in Suppl. material 3.

Funding: This work was supported by the LifeWatchGreece infrastructure (MIS 384676),
funded  by  the  Greek  Government  under  the  General  Secretariat  of  Research  and
Technology (GSRT), ESFRI Projects, National Strategic Reference Framework (NSRF).

Web location (URIs)

Homepage:  https://rvlab.portal.lifewatchgreece.eu/ 
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Technical specification

Programming language:  R, Javascript, PHP, C#

Operational system:  Windows or Linux or Mac

Interface language:  HTML, CSS, Javascript

Usage rights

Use license:  Other

IP rights notes:  MIT license

Implementation

Implements specification

In  this  section we describe the RvLab web application and how a user  can access it
through LifeWatchGreece portal. The following screenshots illustrate the web pages a user
goes through when using RvLab. After registering and logging in at portal's landing page
(Fig. 6 - left image), the user comes to portal's Home Page (Fig. 6- right image) where
direct access to RvLab (and other virtual laboratories) is available.

 
Figure 6. 

Screenshot  of  portal's  landing (left  image)  and home page (right  image)  available via  the
LifeWatchGreece  portal,  displaying  basic  information  on  all  virtual  laboratories  (including
RvLab).
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The main interface of RvLab is comprised by four panels (Fig. 7). The Workspace panel
(top left)  allows users to upload .csv files that can be used as input and monitor their
available storage space. The Functions panel  (right)  allows users to select  a statistical
function, configure it and submit a new job to run for execution. The Jobs panel (bottom
left)  allows the user to keep track of  his submitted jobs,  monitor  their  status,  view the
results  or  delete  the  ones  that  are  not  needed  anymore.  The  Help  panel  contains
information about RvLab and its usage policies. Example datasets (Fig. 8) can also be
found there, if someone wants to try out RvLab without using his own input files.

 

a b

c d

Figure 7. 

The RvLab main interface.

Figure 8. 

Basic file formats supported by RvLab:
a: Aggregation file.
b: Environmental data file (quantitative).
c: Abundance matrix.
d: Factor file (qualitative).
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Once a job is completed, the user can view the results page by clicking on the Job ID link
(Fig. 9 - left image). The result page (Fig. 9 - right image) may contain textual information
(i.e. "Significance values and taxonomic indices values"), graphical results (i.e. "Taxonomic
indices  funnel  plots")  or  file  results.  Result  files  can  be  downloaded  or  added  to  the
workspace for downstream analyses and further utilization in additional RvLab functions.

Screen shots showing examples of the graphical results generated by RvLab can be seen
in  Fig.  10.  The  interactive  SUMMARIZEplot function,  utilizing  JavaScript  Data  Drive
Documents (D3.js) and HTML (Fig. 10a) allows users to observe distributions of species
per station in bar charts, as well as pie charts, generated from the most abundant species
found in each station. The results of regression analysis, i.e. the linear model relationship
between environmental factors measurements during sampling, such as maximum depth
and bathythemetry, are shown in Fig. 10b. Outputs of Analysis of Variance (Anova) (Fig.
10c, left image) and Analysis of similarities (Anosim) (Fig. 10c, right image) can be used to
provide statistical significance for the relationship between environmental factors selected
by the user. Finally, Principal Component Analysis (PCA) showing an ordination (grouping)
of stations in a lower dimensional space, given their species abundance, is presented in
Fig.  10d.  The  user  is  given  flexibility  in  assigning  colour-codes  according  to  selected
factors, such as the location of the sampling stations.

RvLab  is  developed  in  Hypertext  Preprocessor  (PHP)  and  has  been  integrated  in  the
LifeWatchGreece portal  allowing registration to the common user database used for all
virtual  laboratories  available  via  the  portal.  This  integration  utilizes  some  background
Hypertext Transfer Protocol (HTTP) communication between the portal's core and RvLab's
web application  that  involves  exchanging  information  regarding  credentials and access
control  privileges.  Moreover,  cron jobs have been deployed to  ensure that  policies are
enforced and job status is updated regularly through Asynchronous JavaScript and XML
(AJAX) calls. Although job execution takes place on a cluster, RvLab has direct access to

 
Figure 9. 

The results page of RvLab.

14 Varsos C et al.

http://arpha.pensoft.net//display_zoomed_figure.php?fig_id=2576679
http://arpha.pensoft.net//display_zoomed_figure.php?fig_id=2576679
http://arpha.pensoft.net//display_zoomed_figure.php?fig_id=2576679


all job folders by mounting (through SSH) the rellevant cluster directories to the web server.
RvLab uses Portable Batch System (PBS) scripts to schedule each job for execution on the
cluster.

Mobile RvLab application (mobRvLab) 

The  RvLab  mobile  application  (mobRvLab)  has  been  developed  by  utilizing  Unity3D
Platform  and  C#  scripting  language.  The  application  is  available  for  android  and  ios
platforms and functions on a dynamical and autonomous basis. It receives data in json
format  from the LifeWatchGreece portal  in  real  time by  exploiting  the appropriate  web
services  that  have  been  developed.  Whenever  data  are  required,  a  secure  proper
communication channel is established between the device and the portal.

As  previously  mentioned,  the  RvLab  is  available  after  registration  and  login  to  the
LifeWatchGreece portal. This is a pre-requisite in order the user to access mobRvLab by
utilizing  the  same  account  credentials.  MobRvLab  employs  the  same  functionalities
adopted by the RvLab. The mobRvLab main page includes general information about the
application  and  also  displays  three  main  tabs:  “Functions”,  “Files”  and  “Jobs”.  The

a b

c d

Figure 10. 

Screen shots showing a few of the graphical results generated by RvLab functions.
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“Functions” tab shows all available functions, same as in the portal version. The user can
select which function to run, including parallel implementations of available functions. In the
“Jobs” tab the user can view a jobs log file and keep track of each job status. The jobs are
presented and ordered by date. Each job can be selected for viewing results or for deletion.
The “Files” tab displays the user workspace and allows file management by uploading or
deletion of data files. In principle, the mobRvLab provides a direct link, via mobile access,
to the RvLab user account created in the LifeWatchGreece portal; jobs are executed in the
LifeWatchGreece  cluster  and  not  locally,  hence  allowing  user  access  to  the  high
performance computational resources of the cluster via mobile appplication. The user can
choose to submit jobs and view results from either of the virtual laboratories, benefiting by
the usability and flexibility of RvLab in data analysis, as well as by the results acquisition.
Fig.  11 displays  the  data  exchange  web  services  and  overall  functionalities  of  the
mobRvLab.

RvLab  mobile  application  is  available  for  download  at  https://portal.lifewatchgreece.eu/
mobile_apps

 

a

 

b

Figure 11. 

Mobile RvLab application web services and screen shots.
a: Data exchange web services between portal and mobile RvLab versions.
b: Overall workflow of the mobRvLab interface.
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Audience

The desired target audience is the average R user, without requiring expertise and prior
training in the field of algorithm optimization and parallelization. However, basic statistical
knowledge for using the analytical routines and for the interpretation of results is required.

Additional information

Experimental Evaluation

We conducted a series of experiments to evaluate the generic methodology described in
previous sections, in order to study (i) the speedup achieved with the new functions when
exploiting  the  resources  of  a  multiprocessor  environment  and  (ii)  to  identify  optimal
allocation of resources given the size of the input data. The reported times are the average
of 3 runs for each configuration. They were conducted in a controlled environment, where
all  external  access  was  blocked;  despite  being  an  idealized  environment,  this  setting
allowed us to reach consistent conclusions about the behaviour of the functions.

Experimental setup 

Our experiments varied between functions requiring large amounts of memory to handle
input data, as well as functions performing computationally intensive tasks. For the former
category, datasets of increasing size have been used as input. The taxa2dist function, as
well  as  the  combined  taxa2dist+taxondive,  fall  into  this  category,  as  they  rely  on  the
computation of a distance matrix that can become significantly big depending on the initial
dataset. For the latter category, we varied the number of computations, namely the number
of permutations that need to be executed before producing the result. For each of these
cases,  we  measured  the  execution  time  of  the  parallel  version  of  our  functions  when
allocating a different number of processors and compared these times to the time needed
to run the serial function, i.e., the version provided by the vegan package. Note that in
certain  cases the serial  version could  not  be executed at  all,  e.g.,  when the available
memory was not enough to handle computations.

All experiments were conducted on a cluster involving 10 Intel Xeon CPU E5-2667 2.9GHz
cores with a total of 384Gb RAM. We measured times by allocating 1, 2, 4, 6, 8 or 10 CPUs
to  the  parallel  functions,  in  order  to  study  their  behaviour.  The  results  are  presented
through a series of diagrams which are based on a comparative analysis; absolute timing is
mentioned only for verification. Although the current version of the RvLab portal runs over a
cluster  having  a  different  configuration,  the  messages  conveyed  by  our  experimental
analysis are still valid, as we are not interested in the absolute times measured, but rather
on the speed up that can be achieved.

Experiment 1. taxa2dist 

The diagram in Fig. 12 shows the speedup achieved by running the parallel implementation
of the taxa2dist function in comparison to the serial one, for datasets having approximately
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1,700 lines of species (small), 16,900 lines (medium) and 42,300 lines (large), respectively.
Specifically, the black line at 1x sets the boundary in speedup, as it denotes the execution
of the serial program itself. Obviously, no matter how many processors we assign to this
program,  the  execution  time  stays  the  same  since  no  parallelization  of  operations  is
possible within its code. For example, with the small dataset as input, the execution time
was 5.1 sec on average with 1 CPU and 5.0 sec with 10 CPUs; for the large dataset, these
times where 21.2 min and 21.1 min, respectively. We can safely conclude that the number
of processors do not significantly affect the serial program.

Any values below the 1x boundary denote execution times proportially higher to the serial
ones, whereas values above the boundary denote how many times faster the execution
was found to be. As mentioned above, we measured our parallel program having different
allocations of  processors,  in  order  to  check at  which setting the maximum speedup is
achieved. In other words, the diagram shows the behaviour (i.e., speedup) of the parallel
program in comparison to the serial one (vertical axis) given two parameters, the number of
processors assigned to the program (horizontal axis) and the size of the input data (colored
lines).

A  first  observation  that  can  be  made  is  that  for  small  datasets  the  serial  version  is
somewhat faster than the parallel one. This is displayed by the points lying below the 1x
threshold. Indicatively, while the serial version required 5.1 sec on average to run the small
dataset as mentioned before, the parallel version with 2 CPUs needed 6.2 sec and with 4
CPUs 7.3 sec. For such small datasets, the differences in absolute times are very small,
therefore any delays introduced due to the initialization of  the cluster  seem to play an
important role.

 
Figure 12. 

Computational results about optimization in taxa2dist's performance, considering the number
of processors (x-axis) and the size of the input data.
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The situation changes as the input dataset becomes bigger, where the parallel version is
faster in many cases. For example, with 4 CPUs the parallel version required 2.14 min for
the medium dataset and 14.5 min for the large one, whereas the serial version needed 3.4
min and 21.2 min, respectively.

Nevertheless,  speedup  decreases  as  we  add  more  CPUs.  This  observation  verifies  a
conclusion already known in the ICT community: the parallel solution is not panacea and
proper allocation of resources needs to be made not only based on their availability, but
also on other parameters, such as the size of the input in our case. It seems that the cost
of  communicating  data  between  processors  becomes  considerable  as  we  add  more
processors.

It should be noted here that none of the aforementioned functions was able to operate with
datasets of larger size, due to memory overflow. For such datasets, one needs to revert to
the PostgreSQL variation that stores data on secondary memory, which inevitably takes
much longer times to execute.

Experiment 2. taxa2dist+taxondive 

Since the output of  taxa2dist is  very often used as input to the taxondive function, we
implemented the parallel version that combines the two, as described in a previous section.
The  taxondive computes  indices  of  taxonomic  diversity  and  distinctness,  which  are
averaged taxonomic distances among species or individuals in the community (Clarke and
Warwick  1998).  This  function  has  the  added  advantage  that  it  manages  to  overcome
memory barriers: due to the algorithmic structure of these functions, one can break the
huge bi-products of taxa2dist into portions and complete the execution in an incremental
manner.

Fig. 13 shows the results obtained, revealing impressive speedups. For instance, while the
vegan functions require 4.1 hours to execute the large dataset, the parallel version, when
exploiting all 10 CPUs of the cluster, manages to reduce this time to 20 min on average.
Even for the smallest dataset, where the serial version needs 20.5 sec, the parallel version
runs faster,  takeing 6.6  sec with  4  CPUs and 4.4  sec with  10 CPUs.  One reason for
obtaining  these  results  is  the  more  efficient  redefinition  of  the  functions  made  when
rewriting  the  code:  we reduced the  work  needed by  avoiding  duplicate  calculations  of
operations  that  exist  in  the  vegan (serial)  code  of  both  the  taxa2dist and  taxondive
functions, and we utilized the same structures, wherever possible.

What is even more impressive is that we even managed to run datasets of much larger
sizes  that  cannot  be  executed  otherwise:  indicatively,  we  managed  to  complete  the
calculation of the taxa2dist+taxondive function for an input dataset having 168,931 lines of
species in 6.6 hours when allocating 10CPUs.
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Experiment 3. anosim 

The next set of experiments concentrated on the anosim function. The preliminary profiling
tests we performed showed that the main issues one needs to tackle are concentrated on
the consumption of time and not on memory overflow. This time consumption is strongly
correlated with the number of “permutations” we introduce to the function.

As we see in Fig. 14, as we provide more processors to the parallel version, the execution
becomes  faster.  Another  conclusion  is  that  the  number  of  permutations  are  counter
analogous to the algorithm’s running time, but we obtain higher speed up as we increase
the  number  of  allocated  processors  for  the  increased  amount  of  permutations.  This
experiment was conducted with a 9 Mb dataset as input .

The  above  diagram  (Fig.  14)  suggests  that  the  parallel  version  with  10  processors
completes up to 24 times faster the calculations in comparison to the serial anosim; more
specifically, it needs only 1.1 sec as compared to 27 sec. Also, every parallel version is
faster than the serial one, apart from the case where the available processors are less than
2. Also, when we have 10  – 1 permutations (orange broken line), the parallel version is
faster than the serial.

In  Fig.  15,  for  larger  datasets,  we  notice  that  most  parallel  versions  improve  the
computational time, except for the case with 10  – 1 permutations and with the number of
processors  being  less  than  8.  The  parallel  version  with  10  –  1  permutations  has
neglectable difference with respect to the serial one up until 8 processors. The maximum
optimization we achieve is 13 times with 10 processors, from 5.8 min to 28.9 sec. This
experiment used a 230 Mb dataset.

 

7

3

4

Figure 13. 

Computational  results about optimization in taxa2dist+taxondive's performance, considering
the number of processors (x-axis) and the size of the input data.
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Experiment 4. adonis 

Our profiling tests with the adonis function revealed that no memory issues are likely to be
met in this case; instead, the main bottleneck that should concern us is the scaling of
computation effort. The dominant factor of time consumption is the number of permutations
set as input to the function, therefore we broke the task of computing them into chunks to
be assigned to each of the available processors.

 

 

Figure 14. 

Computational results about optimization in anosim's performance, depending on permuations
and number of processors (np), for small datasets.

Figure 15. 

Computational results about optimization in anosim's performance, depending on permuations
and number of processors (np), for large datasets.
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Fig. 16 shows the speed up gains of the parallel versions. It is evident that the number of
processors assigned, directly affects the speed up in each version. Also the number of
permutations are counter  analogous to the total  computation time.  As we increase the
number  of  available  processors  the  computational  time  is  reduced  up  to  12  times
compared to the serial version: for example, the serial version requires 8.1 min and the
parallel  with  10  processors  40  seconds  for  10  –  1  number  of  permutations.  Another
interesting observation from the diagram is that the execution of parallel computations with
a small number of permutations (e.g., less than 10 ) is not faster than the serial on (black
line with circles) despite the resources allocated.

Experiment 5. simper 

Similarly to the anosim and adonis functions, the simper function also relies on the number
of  computations requested and not  on the available memory.  As before,  we break the
permutations into chunks which are assigned to the available processors.

Fig.  17 shows the speed up gains  implementing the parallel  versions.  The number  of
processors is analogous to the speed up in each version. Also the number of permutations
are counter analogous to the total computation time, but as we increase the number of
available  processors  the  computation  time  falls  up  to  5  times  compared  to  the  serial
version. For instance, the serial version needs 11 sec and the parallel with 10 processors 2
sec, for 10  – 1 number of permutations.

As we already observed in the experiments with the previous functions, we notice again
here that when the number of permutations is small parallelization is not always beneficial:
in  fact,  increasing  the  number  of  processors  may  hinder  performance,  due  to  the
communication costs involved.
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Figure 16. 

Computational  results  about  optimization  in  the  performance  of  adonis,  depending  on
permuations and number of processors (np).
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Experiment 6. mantel 

Similarly to the previous functions, the mantel function relies on recurrent computations
without producing any memory leakage or overflow. These recurrent computations depend
on the number of permutation.

For further investigation we performed two classes of experiments, one for a small input
dataset, 9 Mb, and one for a large input dataset, 230 Mb. The diagrams in Figs 18, 19
show that the behaviour of both experiments follow the same principles as the experiments
for the previous functions.

 

 

Figure 17. 

Computational results about optimization in simper's performance, depending on permutations
and number of processors (np).

Figure 18. 

Computational results about optimization in mantel's performance, depending on permuations
and number of processors (np), for small datasets.
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In Fig. 18, for the small dataset, as long as we assign less than 8 processors all parallel
efforts are less efficient than the serial mantel. Beyond this threshold, we notice a speed up
increase and the parallel version outperforms the serial one (black circled line). Finally,
using all 10 processors we reach the maximum speed up.

In  Fig.  19,  for  large dataset,  all  parallel  versions improve the computational  time.  The
maximum speed up gain is 15 times, for the parallel version with 10 processors, namely
1.2 sec instead of 20.2 sec for the serial mantel.

Experiment 7. bioenv 

Bioenv also depends on repeated computations. The main difference with the previous
approach is that instead of breaking the permutation’s linked computations into chunks, we
break the ncol’s linked computations. This modification came along with a limitation. The
limitation suggests that it is not useful to use more processors than the number of ncol.

In Fig. 20 we report results from an experiment with a dataset with 1 ≤ ncol ≤ 8. As long as
we  increase  both  the  ncol  parameter  and  the  number  of  processors  the  speed  up
increased. The bioenv serial version is faster than all parallel versions for ncol = 1. After
that, the limitation verified from the results, i.e., the experiment with ncol = 4 reaches 2
times speed up, for  4 processors,  with respect to the serial  bioenv,  but  if  we increase
further the number of processors the speed up decreases and converges to 0. A general
conclusion drawn from Fig. 20 is that we gain the maximum speed up when the number of
available processors becomes equal with the number of ncol. Consequently, the maximum
speed up we can gain is about 4 times for the parallel version with 8 processors when ncol
= 8, namely we decrease the consumption time from 4.9 sec (serial version) to 1.2 sec (8
processors for ncol = 8).

 
Figure 19. 

Computational results about optimization in mantel's performance, depending on permuations
and number of processors (np), for large datasets.
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Outlook and Future Work

Future implementations of the RvLab will include additional functions that are important for
environmental ecology, biodiversity, fisheries and modelling. The RvLab has the possibility
to  incorporate  a  variety  of  functions  and  R  packages,  apart  from  the  ones  already
implemented,  should  the  user  contact  the  development  team with  a  relevant  request.
Moreover,  we are currently  also investigating issues of  assigning jobs as a function of
available resources in order to ensure optimal core distribution and function execution for
all jobs submitted to RvLab.

Conclusions

The RvLab is a very useful and powerful tool, both for users who are already familiar with R
(and some of its functions) but also for students and/or scientists who are in favour of open
source software and would like to dedicate some time to get familiar with its functions,
without having to go through the steep command line R learning curve.

When  compared  with  online  virtual  environments,  such  as  the  "Multivariate  AnalysiS
Applications for Microbial  Ecology (MASAME)" suite,  apart  from the intrinsic similarities
between  the  two  platforms,  it  is  obvious  that  the  RvLab  can  implement  a  plethora  of
functions, some of which are parallelized. Thus, the user can benefit from the availability of
newly designed functions if the dataset to be analysed requires their implementation.

The accessibility of RvLab is also one of its major advantages; apart from being part of the
LifeWatchGreece Infrastructure, it is also a part of the LifeWatch Marine Virtual Research
Environment (VRE). The LifeWatch Marine Virtual Research Environment (VRE) portal is
bringing together several marine resources, databases, data systems, web services, tools,

 
Figure 20. 

Computational results about optimization in bioenv's performance, depending on number of
columns and number of processors (np).
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etc.  into one marine virtual  research environment,  allowing researchers to retrieve and
access a great variety of data resources and tools.

In addition, the RvLab is an interactive virtual laboratory; should the user require other
types of functions, these can be added in the "laboratory" and become available online in a
short  time.  Therefore,  the  more  users  are  logging  in  the  portal  and  using  it  for  their
analyses, the more they can improve the RvLab, given the enormous possibilities of its
programming language.

Appendix

The source code for the functions is available for download at the RvLab.
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